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Abstract—Communication protocols are complex; their imple-
mentations are difficult, causing many unintended (and severe)
vulnerabilities in protocol parsing. While the problem of packet
parsing is solved, session parsing remains challenging. Building
on existing systems that reliably parse individual messages,
we present our four-component framework for implementing
protocol session parsers with the goal to improve security of
protocol parsing: specification of a protocol message, description
of a protocol state machine, testing routines to validate imple-
mentations against fake and real data, and graph generation to
visualize implementations. This framework enables the creation
of a session parser, which validates individual protocol messages
in the context of other messages in the same conversation. This
is helpful because more secure parsers lead to more secure
communication.

Keywords—Language-theoretic security, protocol state ma-
chine, protocol parsing, session parsing

I. INTRODUCTION

Parsers are an important focus of the language-theoretic

security research community, and for good reason: they usually

comprise the initial line of defense against malformed input,

whether malicious or otherwise. These defenses can be both

explicit, in the form of, e.g., firewalls and intrusion detection

systems (IDS), or implicit, in the code deep inside software

that consumes the input. One of the central tenets of language-

theoretic security is that parsing and verification of input

should be performed both explicitly and completely before

the data is operated upon—failure to do so results in well-

documented “shotgun parsers” [3], which tend to be fragile

and vulnerability-prone. As a result, much attention has been

paid to the task of parsing data formats such as USB [6],

DNP3 [4], and Zip [1].

The task of parsing the zipfile format is exemplary of most

of the parsing work presented recently in that it consumes the

entire input all at once and determines whether or not it is

valid. But a great deal of data that needs to be parsed is not

available all at once: indeed, the data often takes the form of

sequences of messages in a session that follows the rules of a

protocol. Consider the vast array of network communication

protocols that feature messages passing back and forth be-

tween endpoints: TCP, HTTP, IMAP, SMB, Tor, POP3, SMTP,

BitTorrent, not to mention myriad ad-hoc protocols for, e.g.,

online games and other proprietary software.

Checking the well-formedness of an individual message

within these protocols is necessary but not sufficient: systems

must also check whether the message makes sense in the

context of the protocol session. For example, in TCP, a packet

with the SYN flag set must be followed by a packet with

the SYN and ACK flags set; any other packet, even if well-

formed, is invalid given the context established by the first

packet. Likewise, in SMTP, the MAIL command must precede

the RCPT command. Despite the fact that the individual

packets or commands may be correct in and of themselves,

the conversation as a whole is not correct due to discrepancies

between messages.

A huge number of protocols that support different message

types use state machines to specify which messages are per-

missible given the sequence of previously-received messages.

These state machines are often specified graphically (as in

the case of TCP—see Figure 13) but also textually (also

in the case of TCP—see RFC 793 [11]). Depending on the

complexity of the protocol involved, these state machines can

become horribly convoluted [10]. In any case, however, the

task of implementing a given protocol often reduces to that

of translating the graphical or text description of the state

machine to executable code.

The protocol parsing efforts cited above can determine the

well-formedness of a single message within the protocol but

do not consider whether even a syntatically valid message

makes sense within the context of the protocol conversation.

In this paper, we present our methodology for creating ses-
sion parsers: parsers that ensure a sequence of well-formed

protocol messages follows the rules laid out by the protocol.

In doing so, we build upon all the previous work that reliably

parses individual messages; indeed, we assume such a compo-

nent has already successfully parsed each and every message

that is handed to the session parser.

Our work takes the form of a embedded domain-specific

language (eDSL) for describing the protocol state machine, a

system for passing sequences of messages through that state

machine, routines to generate a graphical representation of the

state machine, and a proof-of-concept implemention for TCP.

A domain-specific language is exactly as advertised: a

language devised for a specific purpose; in our case, to specify

a protocol state machine. (DSLs have long been used to

describe protocol messages: for a brief history, see Section IV.)

An embedded DSL is one that builds its constructs upon an

existing language, an approach which has a number of benefits.

First, rather than create a language toolchain from scratch,

we can re-use the existing Haskell infrastructure. Second,

because Haskell is a functional programming language, it

includes a wide selection of ways to compose functionality,

thus allowing for easy extensibility of our DSL. Third, we
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intend to follow in the footsteps of previous work on parsing

protocol messages [6] and automatically generate session-

parsing C code that can be included in operating system

kernels. Fourth, and in the same vein, the Haskell protocol-

session model and its generated, C-language counterpart can

be formally verified using the methodology pioneered in the

seL4 project [7].

We imagine our framework being used by those designing

protocols, implementing protocols, and testing protocol im-

plementations. Protocol designers would use our approach to

define their protocol, use our framework to test sample com-

munication sessions, and automatically generate a graphical

state-machine representation for documentation. In the fullness

of time, we hope that implementers will take the protocol

model created by the designers and automatically translate

that model into whichever language the implementer desires.

Testers would manually verify (though, also in the fullness of

time, we would like to see this testing to be both formal and

automated) that the generated state machine diagram matches

hand-written diagrams provided with protocol documentation.

Our contributions are summarized as follows:

• a formalization of protocol state machines using a

domain-specific language (DSL) allowing for the discrete

definition of states, tests, and effects;

• a testing framework whereby sequences of crafted or

captured messages can be passed through the session

parser to verify its correctness;

• the ability to generate a graph from the protocol definition

that can be used to informally verify state machine

correctness, either independently or in conjunction with

state machine diagrams given in protocol specifications;

and

• a proof-of-concept session parser for TCP.

As mentioned above, our DSL is embedded in Haskell,

which allows for extensibility using the broad selection of pre-

existing infrastructure and the potential for easily generating

a C implementation of a session parser that can be formally

verified.

We proceed with a description of our session-parser for-

malization (Section II), followed by our our implementation

of TCP (Section III), in which we demonstrate how our

implementation can be empirically tested with crafted inputs,

with captured inputs, and by visually comparing the state

machine described in the code to the state machine presented

in the spec. We review related work (Section IV) and finally

close by musing on opportunities for future effort (Section V).

II. IMPLEMENTATION OF PROTOCOL STATE MACHINES

Given the fact that many stateful protocols are described

as protocol state machines, it follows logically that their

session parsers should be written as such on the code level.

Thus, we need representations of states and transitions, and

mechanisms to handle transitions between states based on an

incoming packet and to run a sequence of messages through

the implemented state machine. In addition, for the purpose of

ensuring the parser’s correctness, we have developed a testing

framework that allows both micro- and macro-testing using

crafted and captured data. Since many protocol specifications

provide state machines describing protocols, we will also gen-

erate a state diagram with annotations of transitions from the

implemented parser, enabling the visual comparison between

the implemented version and the one provided by specification.

This allows one to informally convince oneself that a particular

implementation of a protocol state machine is correct.

A. Specifying a protocol state machine

1) States: In a protocol, a state is a collection of informa-

tion that describes a given communication. Such information

is not limited to the simple connection status, e.g., Closed,

Established; it also contains other information, like port num-

bers of the two communicating endpoints, that helps determine

the validity of a conversation as other packets arrive. This

data structure in code should contain fields that mirror as

closely as possible the various pieces of information needed

to semantically parse a packet in a sequence, as specified in

the protocol specification.

Since all stateful protocols have some notion of a con-

nection or operational status such as Open and Closed, we

created a simple data structure named ProtocolStatus for

it. This helps narrow down legal transitions when handling

packets. The possible values of ProtocolStatus varies

based on the protocol being implemented. Other necessary,

usually host-specific information for parsing a communication

is also organized and encapsulated in a data strcture called

HostInfo. Similar to ProtocolStatus, the fields of

HostInfo depend on the protocol. If these two data struc-

tures are sufficiently expressive, i.e. encapsulate all necessary

information for parsing a conversation, they can be used

together as one data strcture to represent any state of a protocol

state machine. However, if they are not, developers can create

new data structures to capture unincorporated information as

they see fit.

Note that in the upcoming discussion about specification of

a state machine, we will be using State to denote the data

structure that contains all necessary data for parsing.

2) Transitions: Transitions are integral to a protocol state

machine because they are, in essence, the processing logic on

packet semantics. A transition occurs when an input message is

deemed well-typed in the context of the conversation. In other

words, if the input message satisfies a set of conditions set

forth by the protocol specification, then the automaton changes

its state to reflect the new state of conversation. A transition,

then, is a clean cause-effect relationship where condition

satisfaction is the cause and state change is the effect. Thus, a

transition can be broken down into two components: tests and

effects. Tests represent transitional conditions an input has to

meet, and effects represent transitional updates applied to a

state.

Test: There are many semantic conditions that a single

message must satisfy to maintain the validity of a conversation.

Each condition can be cleanly represented as a Test data

type in our framework. Test contains two fields: name and a
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data Test = Test {
name :: String

, runTest :: (State, Message) -> Bool
}

Fig. 1: A Haskell data type representing a condition needed

to be satisfied by a syntactically valid packet.

data Effect = Effect {
name :: String

, runEffect :: State -> State -> Message -> State
}

Fig. 2: A Haskell data type representing an update to the State

of the protocol machine.

function. The name field allows protocol developers to identify

a particular test, easing the process of debugging. The function

is the test that will be applied to a message in a given

communication context. It takes in a tuple of a State and

a Message and evaluates to a Bool (see Figure 1). This

structure can be utilized to represent all conditions that the

TCP specification has outlined for state transitions. Then, to

ensure semantic correctness, the session parser can simply

execute a list of Tests against a target packet.

Effect: If a packet passes all the Tests, then the associated

transition can take place. There are many moving parts,

many fields in State that require updates, during the active

process of transitioning the protocol state machine from one

state to another. Luckily, these updates are generally explicit

and discrete. Thus, the results of a single transition can be

decomposed into individual, explicit Effects.

The Effect data type, similar to Test, has two fields:

name and a function. The name field serves the same purpose

as that in Test. The function, on the other hand, is an

update applied to the State of a conversation once the parser

determines that the incoming message is semantically valid.

This function takes in two States and a Message and

evaluates to another State (see Figure 2). Unlike runTest,

runEffect requires two States argument; using one

State is insufficient in determining how to apply a specific

effect and reflecting the new protocol state after application

of all effects. For the same transition, already-administered

updates to a State may affect subsequent updates since

the manner in which any given update is applied primarily

depends on the protocol State at the start of the processing

of the target packet. Thus, runEffect requires two States,

where the first State argument is the protocol state after

fully executing the transition based on the last packet, and the

second State argument is for chaining effects of the current

transition.

Given the implementations of Test and Effect, a tran-

sition can be fully described as a three-tuple of a string

that identifies the transition, a list of Tests, and a list of

Effects, and it is declared as such with a type synonym

named Transition in our framework. We can develop a

type Transition = ([Test], [Effect])

type DFA = [(ProtocolStatus, [Transition])]

Fig. 3: Haskell definition of a transition; Haskell definition of

a protocol state machine.

data structure, with ProtocolStatus and Transition,

that fully encapsulates the notion of a protocol DFA (see

Figure 3). This data structure is a list of two-tuples where

the first element of each tuple is of ProtocolStatus and

the second element is a list of Transition. In essence, each

tuple in the list is a state and all of its outgoing transitions.

With a DFA in place, we can now run packet(s) through

the protocol state machine with a function that takes in a

DFA, an initial State, and a list of Messages and evaluates

to a Maybe State. The resulting State is wrapped in

the Maybe type to reflect the notion that there may be

semantically invalid packets in a sequence of messages. If

the sequence is indeed invalid, the function evaluates to

Nothing.

B. Micro- and macro-testing framework

All code is guilty of causing bugs until proven innocent.

Regardless of the difficulty of implementation, it is best

practice to test code to prevent vulnerabilities. Thus, we have

devised a framework for identifying bugs in a given protocol

implementation. In particular, it examines whether the defined

Transitions evaluates to the right Maybe State that

reflects the specification and the programmers expectations.

Figure 5 shows the fundamental building block of this

testing mechanism: execTest, a function that takes in

a three-tuple of State, a list of Messages, and the

Maybe State. It evaluates to a Bool that indicates

whether the result of running the protocol state machine on

the sequence of Messages from the initial State—first

argument—matches the expected Maybe State, which is

the third argument. With this encapsulation, we can perform

micro-tests and macro-tests with various sequences of pack-

ets to test both single transitions and sequential transitions

respectively. It is important to support both types of testing

in this framework because the former allows programmers to

pinpoint specific and isolated errors, while the latter reveals

that (independently working) transitions do not work together

as expected.

execTests supplements execTest by allowing devel-

opers to execute many tests at once and see which tests, if any,

have failed. The function accepts a list of two-tuples where

each two-tuple associates a name with a particular test and

evaluates to a list of names of tests that have failed.

C. Graph generation

There is a gap between derivation and implementation.

In other words, there is no guarantee that the developer’s

implementation of a protocol fully reflects the state diagram

and the protocol specification. Since these session protocols
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runDFA :: DFA -> State -> [Message] -> Maybe State
runDFA _ s [] = Just s
runDFA dfa s (m:ms) | not (null effects) = runDFA dfa newState ms

| otherwise = Nothing
where getTransitions :: DFA -> State -> Maybe [Transition]

getTransitions dfa (State s _ _) = lookup s dfa

canChangeState :: [Transition] -> State -> Message -> [Effect]
canChangeState [] _ _ = []
canChangeState ((_,t,e):ts) s m

| validate t s m = e
| otherwise = canChangeState ts s m

validate :: [Test] -> State -> Message -> Bool
validate ts s m = all (== True) tests

where tests = map ($ (s, m)) . map runTest $ ts

changeState :: State -> State -> Message -> [Effect] -> State
changeState _ s _ [] = s
changeState os s m (e:es) = changeState os (runEffect e os s m) m es

where Just transitions = getTransitions dfa s
effects = canChangeState transitions s m
newState = changeState s s m effects

Fig. 4: Mechanism for running a list of Messages through a protocol state machine.

execTest :: (State, [Message], Maybe State) -> Bool
execTest (i, ms, e) = runDFA machine i ms == e

execTests :: [(String, (State, [Message], Maybe State))] -> [String]
execTests ts = map fst . filter (\(name,result) -> not result) $ tests

where testNames = map fst ts
conds = map snd ts
tests = zip testNames $ execTests’ conds

Fig. 5: Functions in Haskell for running tests on protocol state machine implementation.

can be described as a state machine, we have devised a

mechanism to generate a directed graph from implementation.

The nodes on this graph are the states of the protocol, its edges

the transitions. With a state diagram descibing the processing

logic of the parser, one can informally verify the parser’s

correctness by comparing the generated diagram to the state

diagram provided by the specification.

We utilize the open-source software graphviz [5], specif-

ically its dot tool to generate a directed graph. The dot

program requires a description of the graph marked up in

the DOT language. Thus, we have implemented code that

produces and outputs to two different files a list of state

transitions of the protocol state machine and a list of Tests

and Effects associated with each and every transitions. To

obtain the first list, multiple functions together take in a DFA,

iterate over the list to retrieve names of the transitions, form a

string containing all transitions where each is denoted with its

originating state, target state, and a unique label for annotating

the edges in a graph, and write the string to a file at a given file

path. The second list is acquired in a similar fashion: multiple

functions are used to produce a file with such list by taking

in a list of Transitions and retrieving the names of the

Tests and Effects associated with each Transitions.

Each set of Tests and Effects associated with a particular

State 1,State 1,edge label 1
State 1,State 2,edge label 2
...

(a) Format of the file that describes state transitions.

Test 1,Test 2,...|Effect 1,Effect 2,...|1
Test 1,Test 5,...|Effect 2,Effect 3,...|2
...

(b) Format of the file that associates Tests and Effects with state
transitions

Fig. 6: Formats of files describing a protocol state machine.

state transition is labeled accordingly to the labels denoted in

the first file. The formats of these two files are displayed in

Figure 6.

Once our program produces these two lists in two separate

files, we can use them to generate a directed graph and a table

annotating the transitions. The file responsible for generating

the state diagram requires some parsing because it is not

marked up in the DOT language. Therefore, we wrote a Bash

script that outputs a file with equivalent content in the DOT

language. On the other hand, the file for nnotating transitions

requires no parsing. Thus, we wrote a simple Bash script that
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-----------------------------------------
| Label | Tests | Effects |
|---------------------------------------|
| 1 | Test1 | Effect1 |
| | Test2 | Effect2 |
| | Test3 | Effect3 |
| | Test4 | Effect4 |
| | Test5 | |
|---------------------------------------|
| 2 | Test2 | Effect3 |
| | Test3 | Effect5 |
| | Test6 | Effect6 |
| | | Effect7 |
-----------------------------------------

Fig. 7: Format of a generated ASCII-art table of transition

annotations.

data Message = Message {
sPort :: Port

, dPort :: Port
, seqNum :: Number
, ackNum :: Number
, urg :: Flag
, ack :: Flag
, psh :: Flag
, rst :: Flag
, syn :: Flag
, fin :: Flag
, windowSize :: WindowSize
, urgPtr :: UrgPtr
, options :: Options
, dataLen :: DataLen

}

Fig. 8: A Haskell data type representing a TCP packet.

outputs an ASCII-art table associating transitions with their

respective Tests and Effects (see Figure 7). The two Bash

scripts used to generate the diagram and table are then wrapped

in a Bash wrapper script for ease of use.

III. OUR TCP SESSION PARSER

After discussion of our protocol implementation model, we

now present its application using TCP (Transmission Control

Protocol) as an example. This implemenation follows RFC 793

[11].

A. A TCP message

A TCP packet is defined as a Message using lang-sec

principles and foundings from existing packet parsing work

(see Figure 8). This data type is slightly different from the

packet format specified in RFC 793: some defined fields in the

specification carry no semantic significance, and are therefore

meaningless for our session parser. Message, however, has

a derived field, i.e., DataLen to help the session parser

determine whether packets are acknowledged and in window.

This field is derived from information in the headers of the IP

and TCP packet.

data HostInfo = HostInfo {
lPort :: Maybe Port

, rPort :: Maybe Port
, sndUnack :: Maybe Number
, sndNxt :: Maybe Number
, sndWnd :: Maybe WindowSize
, sndWl1 :: Maybe Number
, sndWl2 :: Maybe Number
, iss :: Maybe Number
, rcvNxt :: Maybe Number
, rcvWnd :: Maybe WindowSize
, irs :: Maybe Number
, finStatus :: Maybe FinStatus

}

Fig. 9: A Haskell data structure that contains information

needed to determine the state of a TCP communication ses-

sion.

B. TCP state machine

Before discussing the implementation of our TCP session

parser, we would like to clarify that our parser is written as an

omniscient observer for the purpose of “objectively” validating

a conversation. This means that the processing logic of packets

is in essence the same as the explicit logic documented in

RFC 793, but its implementation and operation do not parse

packets from the perspective of a single host. Additionally, due

to time and complexity constraints, there are limitations on our

implementation of TCP. We will discuss these shortcomings

at the end of this section.

1) ProtocolStatus and State: Our TCP session parsing

logic is comprised of nine states—the different connection

statuses. In our code, the connection states are of data type

ProtocolStatus and can take of one of the following

nine values: Listen, Syn, SynAck, Established, HalfClose-

dUnack, HalfClosed, SimultaneousClosed, WaitingToClose,

and Closed. As mentioned in the previous section, a protocol

state must contain all information needed to correctly parse a

packet in a communication. Thus we have defined another

structure State to represent the comprehensive state that

is used to parse messages in a session. This data struc-

ture has three fields: ProtocolStatus and two fields of

HostInfo. HostInfo is a data structure that contains host-

specific information that can be deduced from incoming pack-

ets (see Figure 9). It almost has one-to-one correspondence to

TCB (Transmission Control Block): it has an extra field called

finStatus that keeps track of the status of the FIN packet—

Sent, Confirmed, or Nothing (not sent yet). Each field

in this data structure is updated per protocol specification.

2) Transition: To reiterate, a Transition is defined as

a three-tuple of a name, a list of Tests, and a list of

Effects. Our TCP protocol machine has 17 transitions (see

Table I), all of which denote legal state changes. In the case of

parsing a semantically invalid packet, runDFA will evaluate

to Nothing, which can be thought of as an implicit outgoing

transition for each ProtocolStatus.

We wrote 18 Tests and 15 Effects in total, and they

are listed in Table II. Each and every Test and Effect
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From To
Listen Syn
Syn SynAck
SynAck Established
Established Established
Established HalfClosedUnack
Established Closed
HalfClosedUnack HalfClosedUnack
HalfClosedUnack HalfClosed
HalfClosedUnack SimultaneousClosed
HalfClosedUnack WaitingToClose
HalfClosedUnack Closed
HalfClosed HalfClosed
HalfClosed WaitingToClse
HalfClosed Closed
SimultaneousClosed WaitingToClose
SimultaneousClosed Closed
WaitingToClose Closed

TABLE I: Transitions of a TCP state machine.

Test Effect
hasSynFlag updateProtocolStatus
hasNoSynFlag updateAPorts
hasAckFlag updateBPorts
hasNoAckFlag updateSenderInitSeqNum
hasFinFlag updateSenderNxtSeq
hasNoFinFlag updateSenderRcvWnd
hasRstFlag updateSenderRcvNxt
hasNoRstFlag updateSenderUnack
hasData updateSenderFinStatus
hasNoData updateSenderSndNxt
isAtoB updateReceiverSndUnack
isBtoA updateReceiverFinStatus
isExpectedAckNum updateReceiverRcvNxt
isInWindow updateReceiverIRS
isClosedNotSendingData updateReceiverSndWnd
isFromOpenHost
isAckingFin
isNotAckingFin

TABLE II: All Tests and Effects used in the TCP protocol

state machine.

concerns themselves with one specific aspect of either the

given Message or State at which a packet is being

procesed. For instance, isInWindow checks whether all

data in a packet are in the receiving host’s window while

isExpectedAckNum examines whether a packet’s acknowl-

edgement number is in the acceptable range. You may notice

that for some attributes such as the SYN flag, I have Tests

for both their existence and non-existence, e.g., hasSynFlag
and hasNoSynFlag. This is because using the NOT operator

and somehow combining that notion with a list of Tests for

a transition are messy and non-conforming to the structure of

the framework.

We provide, as an example, the transition from

WaitingToClose to Closed in code in Figure 10. All 17

transitions are coded in such format. If a ProtocolStatus
has more than one outgoing transition, these transitions will

have their respective lists of Tests and Effects and will

be organized together as a list of Transitions.

waitingToCloseToClosedTests :: [Test]
waitingToCloseToClosedTests = [ isInWindow

, hasNoRstFlag
, hasNoSynFlag
, hasAckFlag
, isExpectedAckNum
, hasNoFinFlag
, hasNoData
, isAckingFin
]

waitingToCloseToClosedEffects :: [Effect]
waitingToCloseToClosedEffects = [ updateSenderSndNxt

, updateSenderRcvNxt
, updateReceiverSndUnack
, updateReceiverFinStatus
, updateProtocolStatus
]

waitingToCloseTransitions :: [Transition]
waitingToCloseTransitions = [ ( "WaitingToClose,Closed"

, waitingToCloseToClosedTests
, waitingToCloseToClosedEffects )

]

Fig. 10: Transition from WaitingToClose to Closed in code.

Protocol Number of packets Results
SSH 51 Failure
SMB #1 26 Failure
SMB #2 24 Failure
IMAP 38 Success
HTTP #1 10 Success
HTTP #2 45 Success
HTTP #3 32 Success
SMTP 48 Success

TABLE III: Results of running captured sessions through

session-parsing framework.

C. Testing and evaluation

1) Using crafted data: To test whether the implemented

transitions are independently correct, we have written 43

micro-tests and three macro-tests where the micro-tests focus

on individual transitions and the macro-tests examine the

sequential ones. These tests cover most valid transitional sce-

narios of TCP and use carefully crafted (both valid and invalid)

packets to test whether our parser can handle unexpected

sequences of messages. All of the functional tests evaluate

to the expected State.

2) Using real data: Testing using only crafted inputs is

insufficient in “proving” the functional correctness of the

session parser. Thus, we have also captured real TCP data from

network traffic and running them through our session parser.

Real data exposes functional shortcoming and programming

mistakes caused by either buggy code or incomplete under-

standing of the protocol. We used data captured from tcpdump,

parsed the resulting .pcap files to produce interpreted packets,

i.e., Message, and fed them to our parser. Below is a table

summarizing the results of testing using various sequences of

captured packets from different applications built on top of

TCP, followed by brief explanations and observations.
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a) SSH: : We captured a sequence of 51 valid packets

and passed it to our session parser. Unfortunately, our parser

decides that the sequence is invalid. It deems the three-step

handshake portion of the sequence valid, but it transitions

to Nothing after processing the 8th packet. This is because

both hosts of the connection use Options, one of which is

the window scale option. The data length of this packet

exceeds the unscaled window size indicated during the three-

step handshake. Our parser is currently not equipped with data

structures and processing logic for such scenario. With the

assumption that all packets in such a conversation do not send

data out of the sliding window, we removed isInWindow, a

Test for checking in-window delivery, from all sets of Tests

so that the session parser can be examined for other potential

functional errors. Disregarding the window, the protocol state

machine succesfully parses the entire sequence of messages

and evaluates to a Maybe State at the end.

Successfully parsing this sequence without any impromptu

changes to the processing logic requires changes to Options,

HostInfo, and a Test named isInWindow: Options
needs to encapsulate all possible Options specified by various

TCP-related RFC’s; HostInfo should encompass a notion

of which options are used; isInWindow must include some

calculations to appropriately scale the window size when

determining whether the sent data are in range.

b) SMB: : By remotely accessing a shared network node,

we were able to capture SMB data. In the captured sequence,

there were two distinct connections, thus we demultiplexed the

packets and parsed the two sequences of packets separately.

Since both connections used the Window Scale options, the

result is the same as that of SSH—our parser halts somewhere

in the middle of each conversation. Removing isInWindow
test from all conditions of transitions led to successful parsing

of both sequences in their entirety.

c) IMAP: : We captured a sequence of 38 packets that

resemble a successful mail delivery from a host application to

the remote IMAP server. Unlike the SSH packets, these IMAP

packets do not employ Options, and therefore our session

parsing logic is not affected. Our parser successfully parses

this sequence and deems it valid.

d) HTTP: : We captured HTTP as well by navigating

to one webpage. Similar to SMB, there are multiple distinct

connections to the default HTTP port among the captured

packets, nine of which carried HTTP data. We demulitplexed

these packets and analyzed three of them. All of them contain

a single GET request for various resources needed for a

web page. Despite the variance in number of packetsthey

have 10, 45, and 32 packets respectively, they have the same

parsing results: our TCP session parser successfully parses all

sequences from three-step handshake to four-step teardown,

meaning all sequences are valid.

e) SMTP: : We captured 48 SMPT packets. While this

sequence is successfully parsed, it is different from the other

sequences in that the connection did not get terminated with

four-step teardown. One host sent a FIN packet, which was

acknowledged by the other host. However, the other host sent

a RST packet instead of a FIN to terminate the connection.

3) Observations: Testing our session parser against real

data reveals that our parser is limited: in its current state, it

cannot correctly handle packets that use Options. This means

that the Option data type and Tests such as isInWindow
need to be modified so that the parser’s data structures properly

reflect what kinds of options are used by the hosts in a

communication session.

Additionally, more rigorous testing must be carried out.

First, it is because both protocol specification and real data

capture only the happy flow, which describes the valid se-

quences of messages. However, just handling the semantically

valid sequence of packets is insufficient; a secure parser must

be able to handle all inputs, or else it can be exploited. Thus,

the parser must be tested against more handcrafted packets that

can invalidate a conversation in all sorts of manners. Second,

testing against real data reveals functional weaknesses. If this

parser were to be used in practice, or integrated with the

kernel, it must be able to handle various flavors of connections.

For instance, it must be able to handle connections that dont

use Options and those that use all available Options. We can

capture more real data from applications we have examined

thus far or those that we have not explored such as Border

Gateway Protocol (BGP) and Simple Mail Transfer Protocol

(SMTP).

D. Graph generation

One last step we took to persuade ourselves that our session

parser is correct is generating a graph of the implemented

state machine and an ASCII-table annotating the transitions.

Figure 11 shows the graph generated by Dot, and Figure 12

lists out annotations for a few transitions. For comparsion

purposes, we have also included the state machine supplied

by the protocol specification (see Figure 13).

Since our session parser is written as an objective entity that

parses packets omnisciently, the state diagram of our imple-

mentation is different from that provided by the protocol spec-

ification. First, there are fewer states in our implementation

than those in the specification. This is because the nature of an

omniscient parser requires us to collapse a few states specified

in the RFC. For instance, SYN-SENT and SYN-RCVD in the

RFC become Syn in our implementation, while FIN-WAIT-1

and CLOSE-WAIT-1 are replaced by HalfClosedUnack.

As mentioned previously, since our parser is “objective,” it

does not need to use a ProtocolStatus to explicitly keep

track of which host has sent or received a SYN or FIN packet.

Second, there are no transitions between Closed and Syn,

and Closed and Listen in our implementation because

those transitions require non-packet parsing logic. Lastly, there

are more transitions in our implementation, especially going

from a given state to Closed. While the state diagram in

the RFC does not display those transitions, the document does

specify that for those originating states, if the incoming packet

is in window and has its RST flag set, the machine should

transition to Closed.
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Fig. 11: TCP state diagram generated by the dot program.

|--------------------------------------------------|
| 4 | isInWindow | updateSenderSndNxt |
| | hasNoRstFlag | updateSenderRcvWnd |
| | hasNoSynFlag | updateSenderRcvNxt |
| | hasAckFlag | updateReceiverSndUnack |
| | isExpectedAckNum | updateReceiverSndWnd |
| | hasNoFinFlag | |
|--------------------------------------------------|
| 5 | isInWindow | updateSenderSndNxt |
| | hasNoRstFlag | updateSenderRcvWnd |
| | hasNoSynFlag | updateSenderRcvNxt |
| | hasAckFlag | updateSenderFinStatus |
| | isExpectedAckNum | updateReceiverSndUnack |
| | hasFinFlag | updateReceiverSndWnd |
| | | updateProtocolStatus |
|--------------------------------------------------|
| 6 | isInWindow | updateProtocolStatus |
| | hasRstFlag | |
|--------------------------------------------------|

Fig. 12: Part of the ASCII-art table that annotates the labeled

state transitions.

Fig. 13: TCP state machine from RFC 793.

E. Limtations

As briefly mentioned in the beginning of this section, there

exist limitations on our TCP parser. They are enumerated in

the following list.

1) Retransmission and duplicate packets are not handled

correctly.

2) Out-of-order delivery is considered to be invalid.

3) URG and PSH flags are not considered in the processing

logic.

4) The session parser packets contain no options.

5) Overflows of sequence and acknowledgment numbers

are not taken care of.

These constraints exist because we decided to prioritize

other features and functionalities of TCP, not because they

are complicated to implement; in fact, our framework makes

it easy to include them. Expressing a single Transition
as a list of a two-tuple where its first element is a list of

Tests and its second element a list of Effects enables

easy modification. If more conditions need to be satisfied, we

can simply compose more Tests and add them to the existing

list of Tests; the same goes for updates. For instance, one of

the things needed to be implemented to handle retransmitted

packets is creating a new Test to check whether all of a given

packets data have been acknowledged. It is also relatively
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effortless to add possible transitions for a given state. New

Transitions have to be constructed; however, once they

are implemented, one simply has to add them to the list of

Transitions associated with a ProtocolStatus in the

DFA.

F. Summary

With the implementation of TCP parser, we have demon-

strated the effectiveness of our abstractions and model. Using

the abstractions of States, Tests, and Effects, our parser

functions as specified by RFC 793.

Our testing framework provides a reliable mechanism for

exposing functional weaknesses of an implementation against

variations of protocol stack implementations and usage. For

instance, TCP Options are used by some but not all applica-

tions. Using Options as an example, one can deduce that there

are less utilized or popular features out there that our session

parser must be able to handle. Without testing our system

against real data, implementing additional features specified

in other RFC’s would be a tedious process.

Second, and perhaps more importantly, this model of writing

session parsers makes it easy to write and debug parsing logic.

Each condition an input has to satisfy and each update an

accepted input caused, per protocol specification, is explicitly

written and associated with a transition. Thus, to add another

transition—which is what we had to do to accommodate

the occurrence of FIN-ACK, FIN-ACK, ACK instead of a

regular four-step teardown—is to simply write new Tests

and Effects and modify existing ones. If a condition (or

update) were amiss for a transition, then adding it to the list

of Tests for the transition would be sufficient.

To summarize, the data structures we have developed enable

easy creation, development, and modification of a protocol

session parser. Supplementing these data structures is our

testing framework that makes it easy to discover bugs. Lastly,

the generated graph helps to informally and visually verify the

implementation.

IV. RELATED WORK

Use of domain-specific languages for parsing protocol

messages likely originated in the Bro [9] intrusion-detection

system, which used a custom language to specify the format

for dissection and examination. Other efforts include Pack-

etTypes [8], intended for ad-hoc data formats; GAPA [2],

intended mostly for application-level protocols; and, more

recently, Nail [1].

In the realm of DSLs and eDSLs for parsing protocol

sessions, work by Wang and Gaspes [13] is perhaps most

relevant. Their Haskell-based DSL also allows specification of

not just individual messages but also sequences of messages.

Its intent is different, however, in that it aims to be used

for embedded (e.g., hardware) systems, whereas we plan to

integrate with operating system kernels and protocol analysis

tools. Of the latter two, operating systems especially deviate

from the behavior of embedded system: we expect to encounter

issues of concurrency and scale that are not handled by

existing work.

The pattern of creating a specification using a Haskell DSL,

with the intention of generating a C implementation that can

be formally verified, extends work by Johnson [6]. His proof-

of-concept was for USB rather than a traditional networking

protocol like TCP and did not include support for sessions.

Using a Haskell model to formally verify a C implementation

was prioneered (at least in the systems context) by the seL4

project [7].

Ragel [12] addresses the generic problem of producing C

or C++ code that implements a finite state machine. Previous

versions of our work attempted to use Ragel, in fact, though

we found that building on top of Haskell was faster and more

intuitive: embedding our DSL in Haskell gave us access to

better tools and more convenient compositions.

V. CONCLUSION

We have presented our methodology and framework for

parsing protocol sessions, where the semantics of individual

messages are verified according to the communication con-

text in which the message is received. Our domain-specific

language, embedded in Haskell, allows one to specify the

protocol state machine as a set of states and transitions, where

the transitions are specified as sets of tests (if all pass, the

transition is taken) and effects (ways in which the state is

modified should all tests pass). We have shown how TCP can

be specified using our DSL and demonstrated its efficacy by

testing it with live network traffic. Despite the current lack

of complete coverage of TCP features (e.g., Options), we are

able to check the validity of the TCP layer of widely-used

application-level protocols such as IMAP, HTTP, and SMTP.

Additionally, our framework provides the structure by which

additional tests can be conveniently added.

We see significant opportunities to expand this work. First

and foremost, we would like to expand our proof-of-concept

to support the full range of TCP features, most especially TCP

options, which we expect to be the least simple aspect. Next,

we would like to implement other session-based protocols than

TCP, such as USB. We would also like to look at protocols

such as HTTP that do not explicitly support sessions but which

have been jury-rigged to do so (i.e., in the case of HTTP, using

cookies).

With these models in hand, we would like to follow the pat-

tern of previous work [6] and use them to generate C code to

validate entire sessions, with the intention of integrating with

operating system kernels. Finally, we would like to formally

verify the generated code and thus provably harden the corner

of the kernel that deals with session-based communication

protocols.
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