
Inference of Security-Sensitive Entities in Libraries

Yi Lu, Sora Bae, Padmanabhan Krishnan, Raghavendra K.R.

Oracle Labs

Brisbane, QLD 4000, Australia

Email:{yi.x.lu, paddy.krishnan, raghavendra.kr}@oracle.com

Abstract—Programming languages such as Java and C# exe-
cute code with different levels of trust in the same process, and
rely on an access control model with fine-grained permissions
to protect program code. Permissions are checked programmati-
cally, and rely on programmer discipline. This can lead to subtle
errors. To enable automatic security analysis about unauthorised
access or information flow, it is necessary to reason about
security-sensitive entities in libraries that must be protected by
appropriate sanitisation/declassification via permission checks.
Unfortunately, security-sensitive entities are not clearly identified.

In this paper, we investigate security-sensitive entities used
in Java-like languages, and develop a static program analysis
technique to identify them in large codebases by analysing
the patterns of permission checks. Although the technique is
generic, our focus is on Java where checkPermission calls are
used to guard potential security-sensitive entities. Our inference
analysis uses two parameters called proximity and coverage to
reduce false-positive and false-negative reports. The usefulness
of the analysis is illustrated by the results obtained while
checking the OpenJDK7-b147 for conformance to Java Secure
Coding Guidelines that relate to the confidentiality and integrity
requirements.

Keywords-static analysis; Java security; permissions;

I. INTRODUCTION

Tracking information flow from untrusted sources and pre-

venting it from reaching security-sensitive entities is a well

known approach to prevent a variety of attacks including

injection such as cross-site scripting and SQL injection. Typi-

cally, untrusted information needs to be sanitised appropriately

before it can reach security-sensitive operations. Once the

information is sanitised it has integrity. Similarly, tracking

information generated by security-sensitive operations to un-

trusted destinations can help prevent the leak of confidential

information. Confidential information can be suitably declassi-

fied depending on the privilege of the recipient. Techniques to

ensure confidentiality and integrity typically focus on identify-

ing the correct sanitisers or declassifiers and ensuring that they

are applied on all behavioural paths of a program [1]. In the

context of languages like Java1, a sandbox approach is used.

Here the execution of untrusted code is restricted via various

access control restrictions. Access control restrictions are used

in operating systems such as the Android OS where multiple

layers of control have been proposed [2]. The key underlying

concept is that of security-sensitive operations that access

or generate sensitive resources. These operations need to be

protected by the access control mechanisms. Unauthorised

entities should not be allowed to perform operations on these

resources. Both sanitisation and declassification can be viewed

Sora Bae is currently affiliated with KAIST, South Korea
1Java, JDK and JRE are registered trademarks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners.

as restriction on the information that can be used or generated

by security-sensitive operations.

To develop secure systems, the programmer must be able

to identify parts of the program that are trusted or not trusted

and then perform suitable access control to prevent undesired

behaviours. Systems that address these issues include HiStar

[3], [4] and Capsicum [5]. However developing large evolving

systems that are secure remains a challenge. This is because

developers often find it hard to understand the cause of

vulnerabilities [6] and the actual security-sensitive operations

are not clear [7]. This is especially true when the codebase

is large and has evolved over a long time. While behavioural

fingerprint can help identify security-sensitive operations [7]

the focus of their work, like [1], is to identify locations where

access control restrictions can be placed.

In general, sanitisations and declassifications are specified

programmatically and there is no formal specification of the

restricted entities or permissible operations. Hence individual

developers are solely responsible to enforce the desired, but

not explicitly specified, security properties of their code. This

makes the automatic detection of errors almost impossible as

there is no clear specification of acceptable and unacceptable

behaviour.

In this paper we address the issue of inferring security-

sensitive operations in legacy code. We focus on the Java

security model, where permission checks (i.e., calls to the

checkPermission() method) can be viewed as both sani-

tisers and declassifiers. That is, the permission checks ensure

that information is accepted from or released to entities that

have the appropriate privileges ensuring integrity and confi-

dentiality. Furthermore, we focus on the Java Development Kit

(JDK) which is a library and thus not a full application. The

problem of identifying acceptable behaviour is even harder

for libraries like the JDK that are expected to enforce security

for all possible programs (that are unknown and may have

different privileges) that use the library. Although we focus on

the JDK, the technique is applicable to any codebase that uses

explicit checks to restrict access, e.g. .NET. The result of such

an analysis is required before deciding on the kind of saniti-

sation required on tainted inputs or declassification required

on escaped values. That is, the sanitisation/declassification

applied to information from/to different sources/destinations

will depend on the information and the source/destination.

As the security entities in the JDK are not marked up,

we propose a static analysis technique to infer automatically

security-sensitive entities that are protected by permission

checks. For codebases like the JDK, which are large and have

evolved over many years, the security intent is not captured

formally. In general, any security analysis, such as those

2017 IEEE Symposium on Security and Privacy Workshops

© 2017, Yi Lu. Under license to IEEE.

DOI 10.1109/SPW.2017.26

102



implemented to check conformance to the Java Secure Coding

Guidelines (JSCG) [8], first needs to identify restricted entities

that should be protected. This identification is impossible

without fully understanding the semantics of all the entities

and their interactions in the program.

The main contributions of in this paper are as follows.

Let L be a library that relies on permissions checks

for access control, that act as surrogates for saniti-

sation and declassification.

1) A static analysis technique that identifies enti-

ties in L that are security-sensitive along with

their associated permissions.

2) Detection of errors in access control in L
introduced when a library developer, who is

assumed to be very competent, misses the

required permission checks to guard security-

sensitive entities.

3) Various uses of security-sensitive entities iden-

tified in L to ensure relevant security guidelines

are enforced.

This paper is organised as follows. In the next section we

summarise some of the background material including the

Java security model. In Section III we present our formal

definition of security-sensitive methods. In Sections IV and V

we describe our main contribution, namely, an algorithm

to solve the inference problem and its implementation. The

usefulness of our inferencing algorithm is demonstrated using

a few examples of security analyses in Section VI. The paper

concludes by presenting related work in Section VII and

summarising our key contributions in Section VIII.

II. BACKGROUND

In this section we first present a concise summary of

permissions in Java [9] and examples of code with permission

checks that illustrate the problem we wish to solve. The full

documentation on security in Java is available on-line2.

A. Permissions in Java

Java uses permission checks as an access control mech-

anism to restrict access to entities that are not univer-

sally accessible but accessible to entities that have certain

privileges. This access control is enforced dynamically via

the checkPermission(p) call to ensure all entities on

the call-stack have the requisite permission p [10]. This

mechanism ensures that the untrusted code cannot indi-

rectly access protected items via the trusted code. Although

there is no explicit sanitisation process in the JDK, the

checkPermission() calls act like sanitisation. That is,

the value received from an entity that has permission p is

deemed to be trusted to the level represented by p.

We outline some of the issues with the way permissions

are specified in Java. Although concrete permissions in Java

are objects, different objects can actually represent the same

permission. For instance, if all the arguments passed to

the constructors of the different objects are the same, the

permissions are identical. For example, permissions p and

2http://docs.oracle.com/javase/7/docs/technotes/guides/security/index.html

q in the following two statements Permission p = new
RuntimePermission(s1), Permission q = new
RuntimePermission(s2) will be identical if strings s1
and s2 have the same value.

In general, the arguments to the constructor of the per-

missions come in various forms. In some cases, the permis-

sions are just constant strings (e.g., RuntimePermission
("getProtectionDomain") while in other cases the

permissions contain user specified parameters (e.g., the

value file in FilePermission(file, "read")).

Hence our specification needs to clearly mark the non-

constant parameters. Note that, in general, the pa-

rameters could be the result of complex computation.

For example, SocketPermission(host, "connect"
) where host = "[" + address.getHostAddress
() + "]" with the value in address also computed via

a different method invocation. The actual permission value

could also be computed; such as SecurityPermission
("removeProvider."+name). Here, a specific provider

is to be removed from a list and hence the permission to

remove that specific value is required. Permissions could also

use wild-cards. For instance, FilePermission(file, "

*") indicates that all actions related to FilePermission
will be checked.

Permissions in Java can also be ordered using the

implementation-specific implies() method. For example,

if permission p implies permission q, an application that

has p will pass the checkPermission(q) call. From

the perspective of guarding security-sensitive entities, a

checkPermission(x) call can be viewed as protecting

a security-sensitive entity that requires permission x or any

other permission implied by x.

In summary, our technique needs to handle all the variants

of permissions while inferring the security-sensitive methods.

B. Example

Before we describe the problem more precisely and our

proposed solution in detail, we present an example, shown in

Figure 1, to illustrate the problem we have outlined. The code

has a publicly accessible method entry that checks for the

permission and then invokes the private method openRead
which then uses some native code to actually open the file.

As the method openRead is private, the only public access

is via the method entry. The method internal is private

and has unrestricted access to the method openRead. The

method close is called after the file has been used and is

invoked via the method done.

But an analysis that identifies all methods that follow the

method to check the permissions is not sufficiently precise.

In the above example, one can infer that the application

needs permission p to access the native method close that

is perhaps incorrectly identified as security-sensitive. The

method close may not be security-sensitive; its invocation

just happens to occur after the invocation to the method

openRead. If one is not careful, a large number of methods

could be classified as security sensitive. Using such an over-

approximated list to detect security violations could lead to a

number of false alarms. Therefore, the technique to identify

security-sensitive methods needs to be precise.

103



1 public class C {
2

3 public void entry(String name) {
4 Permission p;
5 p = new FilePermission(name, ”read”);
6 checkPermission(p);
7 FileDescriptor fd = openRead(name);
8 done(fd);
9 }

10

11 private FileDescriptor openRead(String name) {
12 return nativeFileOpen(name, ”r”);
13 }
14

15 private FileDescriptor internal() {
16 FileDescriptor fd = openRead(”/etc/passwd”);
17 return fd;
18 }
19

20 private void done(FileDescriptor fd) {
21 checkCloseable(fd);
22 close(fd);
23 }
24

25 private void native close(FileDescriptor fd);
26

27 public void anotherEntry() {
28 Permission q;
29 q = new RuntimePermission(”getPassword”);
30 checkPermission(q);
31 FileDescriptor pfd = internal();
32

33 }
34

35 public void indirect() {
36 checkOkay();
37 FileDescriptor pfd = internal();
38 }
39

40 private void checkOkay() {
41 Permission p;
42 p = new RuntimePermission(”getPassword”);
43 checkPermission(p);
44 }
45

46 }

Fig. 1. Example Program.

The method anotherEntry() shown in Figure 1 can

be used to access the method openRead by invoking

internal. However, the permission being checked on this

path is different to the permission checked on the path from

entry. Here we have various options for the inference

algorithm.

The first option is to also consider the method internal
as security sensitive that happens to call the security-

sensitive method openRead. We also need to have a re-

lationship between the permissions checked in entry and

anotherEntry. If no such relation can be established, these

different paths (ultimately leading to openRead) can be

flagged as potential errors made by the programmer.

The second option is to note that access to the the method

openRead is the disjunction of the two permissions. How-

ever, this is not precise. Different parts of the same application

could have different permission. So a part that has permission

q but tries to access openRead via entry will fail. Hence,

for precision, the execution path needs to be part of the

description.

The notion of a path and methods on a path needs

clarification. In Figure 1 on line 6, there is a direct call

checkPermission. However, it is possible to call helper

methods (as in the method indirect) that eventually call

checkPermission. So it is not sufficient to examine the

lexical scope of the methods and checkPermission to

determine security-sensitive methods. It is essential to consider

the control flow path to determine the permissions that guard

each candidate method.

To conclude, the key issues are:

• The checking of permissions is not lexically scoped.

• The checkPermission calls could be path sensitive.

• A checkPermission call guards access to a specific

method, but it also appears to guard another method due

to the structure of the code.

• The permission values could be the result of some

computation.

• The output of our inferencing algorithm must be suffi-

ciently accurate and precise.

III. DEFINING SECURITY SENSITIVE METHODS AND

FIELDS

In this section we define security-sensitive methods and

fields. Intuitively, security-sensitive methods perform privi-

leged system operations. However, there is no formal de-

scription of such operations making defining security-sensitive

methods challenging. We address this challenge by examining

the usage of potentially security-sensitive methods and not
by the semantics of the statements inside that method. We

do not examine the semantics because such an examination

is a manual process and not feasible for large codebases

like the JDK. The usage of potentially security-sensitive

methods is derived from invocations by the library on behalf

of applications.

A public API method that has calls checkPermission
() is potentially security-sensitive. Such API meth-

ods are obvious and do not need any specific anal-

ysis. Examples of such method include java.awt.
Toolkit.getSystemEventQueue() which checks the

permission java.awt.AWTPermission with the ac-

tion accessEventQueue and java.lang.Runtime
.load() which checks the permission java.lang.
RuntimePermission with the action loadLibrary
concatenated with the name of the library to be loaded. The

full list of such methods can be obtained from the JavaSE

documentation3.

But methods that are not directly accessible from the

application and do not have a checkPermission() in

3http://docs.oracle.com/javase/7/docs/technotes/guides/security/permissions.html

104



them require analysis. Such cases include private methods and

methods in restricted packages that are consistently guarded

by a permission check before they can be invoked.

Definition 1 gives a more precise definition of potentially
security-sensitive methods.

Definition 1: A potentially security-sensitive method m re-

quiring a permission p is one that satisfies at least one of the

following conditions.

1) m is directly accessible by the application and has a

checkPermission() call in it

2) m is not accessible directly by the application and there

is a checkPermission() on permission p (outside

the lexical scope of doPrivileged) on every path

from a public API to m.

Note that we do not consider paths involving

doPrivileged calls as the permission checks may

be trivially satisfied in such privileged contexts. We define

security read-sensitive and write-sensitive fields in a similar

way, i.e, the stores and loads on the field are guarded by

permission checks.

Definition 2: A field f is potentially read-sensitive (write-

sensitive) requiring a permission p if the following conditions

are satisfied.

• f is not accessible directly by the application and

• there is a checkPermission on permission p (outside

the lexical scope of doPrivileged) on every path

from a public API to every statement loading from

(storing to) f .

Based on the above definitions Definition 3 formally defines

security-sensitive operations.

Definition 3: A security-sensitive operation is defined to be

any one of the following:

• an invocation of security-sensitive method, or

• a load of a security read-sensitive field, or

• a store to a security write-sensitive field.

Definitions 1 and 2 are sound in that they will identify

all security-sensitive methods and fields. However, we need

two pragmatic refinements. As shown in Figure 1 we need to

conclude that the method close is not security-sensitive but

at the same time identify openRead as security-sensitive. So

any generated list of security-sensitive methods needs manual

checking because a direct implementation of Definition 3 will

report many false positives. To minimise the manual effort we

introduce the first pragmatic refinement based on the notion of

proximity. The second issue is related to programming errors.

The permission checks inserted in the program form the basis

of our inference algorithm. If a programmer makes a mis-

take, we will miss a potential candidate. Thus our technique

could have false negatives. To avoid this we introduce the

second pragmatic refinement based on the notion of coverage.

These notions also carry over to the definitions of security

(read/write)-sensitive fields. We now formalise the notions of

proximity and coverage.

a) Proximity: Before we formally define proximity, we

say a method n is in the shadow of another method m when

all the invocations of n are preceded/succeeded in the control

flow graph by an invocation of m. A direct implementation of

our definitions may incorrectly deem a method n as security-

sensitive, when n happens to be in the shadow of another truly

security-sensitive method m.
Definition 4: Proximity is defined as the length of the

shortest sequence of invocations in the call graph from a

checkPermission invocation to the candidate security-

sensitive method.
Proximity measures the closeness, as measured by the

number of nested method invocations, of the security-sensitive

operation to the permission that is checked. We fix a threshold

k and for each checkPermission call, identify candidate

methods that are guarded within the proximity factor of k.
b) Coverage: If a programmer was remiss in inserting

a checkPermission call on some control flow path for

a truly security-sensitive method, the method will not be

identified as security-sensitive. It will be useful to present such

scenarios to the library developers who can then exercise their

judgement and remedy the situation by placing appropriate in-

vocations of checkPermission. In this regard, we extend

Definition 1 with thresholds that we call coverage.
Definition 5: Given a directed acyclic control flow graph,

we define a ‘probabilistic coverage’ factor for each node as

follows:

• The node that defines the specific potential security-

sensitive method is assigned the value 1.

• If a node n has value w and has k predecessors, the value

assigned to each of the predecessors of n is w/k.

• The value assigned to a given node n is the sum of the

all values derived from its successors.

Thus coverage is a measure of the likelihood of a permission

check guarding a security-sensitive operation based on the

number of paths to the security sensitive operation. At each

branch point, we assume that each branch is equally likely

and thus spread the possibility uniformly to each branch.
We use the example in Figure 2 to explain the coverage

calculation. Assume that m is the security-sensitive method

and that n1 and n4 represent the checking of the permission

p. Nodes n1 and n5 have the value 0.5 while the nodes n3 and

n4 have values 0.25. Thus the coverage for m with respect to

permission p is 0.75. In other words, there is path from pe to

m (via n2, n3 and n5) with weight 0.25 that does not check

permission p.

pe

��

��
n2

����
n1

��

n3

��

n4

��
n5

��
m

Fig. 2. Coverage Example.

Using Definitions 3, 4 and 5 we define the problem ad-

105



dressed in this paper as follows. The aim is to design and

implement a program analysis technique that can identify

security-sensitive entities (such as methods, fields) in libraries

that are protected by an explicit access control check. The

result of the analysis should also identify a description of

the behaviour and the required access control credentials

necessary to access the security-sensitive entity. The analysis

should also be tunable with user specified proximity and

coverage values.

IV. TECHNIQUE: ALGORITHM

Algorithm 1 Inference Algorithm.

1: Input: program - a library program with codebased access
control

2: Parameters: proximity P and coverage C thresholds
3: Output: permissions[m, p] - m is security-sensitive method w.r.t.

permission p that satisfy coverage
4: Error Report: permissions[m, p] - m is security-sensitive method

w.r.t. permission p that do not satisfy coverage
5: procedure INFERSSM(program)
6: potentialCandidates = IdentifyPotentialCandidates(program)
7: for each m in potentialCandidates do
8: paths[m] = GeneratePaths(m, program)
9: end for

10: for each path in paths[m] do
11: permissions[m, p] = CheckPermissions(path, P)
12: end for
13: for each m do
14: if Coverage(paths[m], permissions[m,p], C) then
15: Output(permissions[m,p])
16: if !Coverage(paths[m], permissions[m,p], 1) then
17: Error-report(permissions[m,p])
18: end if
19: end if
20: end for
21: end procedure

Algorithm 2 Identification of Potential Candidates.

1: function IDENTIFYPOTENTIALCANDIDATES(program)
2: potentialList = /0
3: for each method m in program do
4: if m is private or m in restricted package then
5: potentialList = potentialList ∪ {m}
6: end if
7: if m is public and m has a call to checkPermission() then
8: potentialList = potentialList ∪ {m}
9: end if

10: end for
11: return potentialList
12: end function

Algorithm 3 Identify Permissions Checked.

1: function CHECKPERMISSIONS(path, P)
2: permList = /0
3: for each invocation i in Proximity(path,i, P) do
4: if i is checkPermission(perm) then
5: permList = permList ∪ FullSet(perm)
6: end if
7: end for
8: return permList
9: end function

In this section, we describe our technique to infer potential

security-sensitive methods. Algorithm 1 presents the key steps

in the process. The steps of identifying potential candidates

and recording the permissions that are checked along a path

are in Algorithms 2 and 3 respectively. As is standard, the

method ‘GeneratePaths(m, p)’ at Line 8 returns all the paths

from the public entry to the invocation of the method m in

the program p. Note that other auxiliary program analysis

techniques, that are standard such as call-graph construction

using points-to analysis [11] and data-flow algorithms [12],

are used to generate all the paths.

In Algorithm 1 the procedure INFERSSM identifies the

security-sensitive methods in the given program. It uses the

functions “IdentifyPotentialCandidates” at Line 6 (described

in Algorithm 2), “CheckPermissions” at Line 11 (described

in Algorithm 3) and “Coverage” at Line 16 that determines if

the paths to the method ‘m’ that have the requisite permission

‘p’ satisfy the coverage requirement. This uses a standard in-

terprocedural dependence analysis and is not reproduced here.

If the coverage requirement is satisfied, ‘m’ is outputted as a

security-sensitive method along with the requisite permission

‘p’. Furthermore, we are interested to know which security-

sensitive methods are not completely guarded by permission

checks on the requisite permission ‘p’. When the coverage is

not full, i.e., the method ‘m’ is not always guarded by the

permission ‘p’, an access control error is reported. This list of

errors is useful to the library developer to ascertain whether the

absence of permission checks were intended or inadvertently

missed.

In Algorithm 3 the function ‘Proximity’ at Line 3 also

uses standard graph-theoretic algorithm (such as shortest path)

on the control flow paths of the program and is elided. The

method ‘FullSet’ at Line 5 returns all the permissions identi-

fied by the specific permission used. This includes permissions

that are implied, as explained in Section II-A.

V. IMPLEMENTATION AND INITIAL EXPERIMENTAL

RESULTS

The above technique is implemented in the Parfait [13]

framework. As we are interested only in the control flow

paths when the security manager is enabled, our analysis

ensures that the code we analyse is guarded by the if
System.getSecurityManager() != null check.

Other auxiliary methods to identify the invocation of

checkPermission(), to resolve the actual permissions

(where possible – otherwise we use only the type of the

permission and the part of the action and target that can be

resolved) used in permission checks, the call depth from a

given point are also defined.

As a case study, we use the OpenJDK7-b147 to study the

effectiveness of our approach. We first present examples of

security-sensitive methods inferred by our analysis and then

present the overall findings. The entire program for these

examples can be found on-line4.

The first example of a security-sensitive method is

removeMBeanServer() which is private in the

class javax.management.MBeanServerFactory and

4http://grepcode.com

106



requires the permission

javax.management.MBeanServerPermission
with the action releaseMBeanServer. This

method has been identified because the public

method releaseMBeanServer() calls the method

checkPermission (on line 151) before invoking

removeMBeanServer().

The second example is the private native method open()
in java.util.zip.ZipFile which requires the java.
io.FilePermission permission with the read action;

but the permission also takes the name of the file as a string

whose value cannot be determined. The method open() is

called by the constructor that invokes the method checkRead
() (on line 205) that has the requisite permission check.

The final example is the private method loadLibrary0
() in java.lang.ClassLoader and is invoked numerous

times. But each invocation is guarded by the permission java
.lang.RuntimePermission. There the action is the con-

catenation of the string loadLibrary and the actual name

of the library. This derivation requires the interprocedural

analysis to determine the location of the permission check

calls.

Table I gives the number of inferred security-sensitive

methods in the OpenJDK7-b147 for different coverage and

proximity measures. These results show the effectiveness of

our approach. Although the classification of reports into True

Positives (TP) and False Positives (FP) is done manually, a

completely manual process to identify close to 100 methods

from the entire codebase consisting of more than 150,000

methods will be tedious. Thus our technique automates a large

aspect of the identification process. The results also shows that

there are subtle omissions of permissions checks in the JDK.

In many of these cases, the omission is deliberate and can

only be understood by the developer. For example, the method

sequence() in java.lang.Shutdown which is called

by exit() and shutdown(). While exit() performs

security checks before invoking sequence(), the method

shutdown() does not because it is invoked by the JVM

directly and is assumed to be trusted.

We are able to detect such methods with a coverage of

0.5 but at the cost of increased FPs. Similarly, an increase

in proximity results in a significant increase in the number of

FPs reports as more methods are under the shadow of security-

sensitive invocations.

VI. USE CASES

We now outline two potential uses of the security-sensitive

inferencing mechanism. These use cases relate to sections

from the JSCG [8] which lists several guidelines for JDK

library developers. The notion of security-sensitive methods

and fields are crucial for analysing the JDK and to determine

whether the coding guidelines are satisfied.

In general, JDK developers use the doPrivileged API

to change the permissions held by the current call stack.

Often the permissions are elevated to “all permissions” to per-

form necessary system operations. However use of security-

sensitive entities in a privileged context can lead to security

errors caused by improper privilege elevation. Here we give

examples of how security-sensitive methods and fields are

important in analysing two such coding guidelines.

JSCG 9.3: Integrity in Privileged Contexts: Section 9.3

of JSCG [8] advises JDK developers not to use tainted data

inside a doPrivileged. This is to prevent an application

without the requisite permissions from influencing a security-

sensitive operation. Our static analysis achieves this as fol-

lows. The first step is to check if a tainted data reaches

doPrivileged. The second step is to check if that tainted

data is then passed on to a security-sensitive method requiring

a permission, say p, or stored in a security write-sensitive

field requiring a permission, say p. If there is no invocation

of checkPermission on that p from a public entry to the

doPrivileged, then a violation is raised.

Figure 3 gives an example of a violation of JSCG 9.3 along

with relevant parts of the java.lang.System class. Here

method, which is publicly accessible, writes to security-

sensitive field props of System class via an invocation

of doPrivileged. As there is a tainted data str inside

doPrivileged that flows to the security-sensitive operation

of writing to security write-sensitive field props, we have a

violation. Note that to implement an analysis to identify viola-

tions of such a guideline we need to first know about security

sensitive entities. In this example, we used our technique to

identify the field props of System class as security-sensitive.

JSCG 9.5: Escape of Sensitive Values: Section 9.5 of

JSCG [8] advises JDK developers not to pass the results

of the operations in privileged context. Figure 3 also rep-

resents a violation of this guideline. Here the value in the

security read-sensitive field props of System class escapes

to the application unguardedly (without any invocations of

checkPermission). As identified props field of System
class is security read-sensitive and is used to detect the

violation of the JSCG 9.5 guideline.

VII. RELATED WORK

Much of the research literature in the area of stack in-

spection has focused on formal security models. Wallach and

Felten [10] present a semantics of stack inspection in terms

of authentication logic. A Java program may be rewritten into

another program that integrates Java stack inspection mecha-

nism in security-passing style. This makes explicit the security

environment as an extra argument passed to every function

and allows the JVM to use standard optimisation techniques

like dead-code and tail-recursion elimination. Fournet and

Gordon [14] provides an alternative semantic in λ -calculus

with an equational theory, which allows to reason about

compiler transformations. Like previous work, they focus on

correct compiler transformations—program optimisations like

function inlining and tail call elimination which can work

correctly in presence of stack inspection. Pistoia, Banerjee and

Naumann [15] proposes a new security model, which extends

stack inspection with information flow control. It enforces an

integrity security property in applications, providing stronger

security guarantee than stack inspection alone. These security

models do not attempt to define or identify security-sensitive

entities.

Pistoia et al. [16] use taint analysis along with

checkPermission() calls to identify portions of code that

107



TABLE I
RESULTS ON OPENJDK7-B147.

Proximity
<= 2 <= 3

True Positives False Positives True Positives False Positives

Coverage
≥ 0.5 81 28 121 117
≥ 0.75 64 22 101 86
= 1 63 20 96 77

public class LibClass {
public String method(final String str) {

return AccessController.doPrivileged(new PrivilegedAction<String>(){
public String run(){

String k = System.getProperty("java.class.path");
System.setProperty("java.class.path", str);
return k;

}
});

}
}

public final class System {
· · ·
private static Properties props;
· · ·
public static String setProperty(String key, String value) {

· · ·
return (String) props.setProperty(key, value);

}
}

Fig. 3. An Example Illustrating Violation of JSCG 9.3 and JSCG 9.5.

need to be executed in privileged mode to avoid throwing

security exceptions. Apart from identifying where privilege

elevation is necessary they also identify situations where

privilege is elevated unnecessarily. Koved et al. [17] also

use checkPermission() calls to determine the policy

required for the application to function properly. While the

core components of the analysis used in both these papers

is the same as ours (i.e., finding paths in the call-graph

involving checkPermission() calls), the aims are quite

different. Firstly, we do not consider doPrivileged() call

nor do we consider the application. The aim is to identify the

actual security-sensitive operations which are only implicit

in the program but protected by checkPermission()
calls. Hence we also need to consider shadow of methods

and coverage of paths. As we analyse only the library, the

required policy and doPrivileged() which is required to

elevate privileges beyond what is assigned by the policy are

not relevant in our analysis. Intuitively, our analysis examines

behaviours where a checkPermission() precedes other

calls while both [17], [16] are interested in calls that ultimately

reach a checkPermission() call. Security analyses of

Java programs will need to combine these different ideas.

In contrast to previous work, our aim is to identify pre-

cisely security-sensitive entities in library code and infer the

programmer’s design intent about how these entities should be

protected (i.e., permissions to guard them). The results from

our technique may be useful to develop new security models

(or refine existing ones) to precisely model security aspects in

both applications and libraries.

Wu and Larus [18] present an algorithm that statically esti-

mates program profiles. It estimates branch probabilities with

a combination of branch prediction heuristics, and propagates

these branch probabilities along each procedure’s control-flow

graph to obtain local block and edge frequencies. With the

function invocation frequencies, it can obtain global block

and edge frequencies. Ramalingam [19] extends the dataflow

analysis with probability facts to determine not just whether

some fact may or may not hold at a program point, but also the

probability that the fact may hold true at a given point. The

analysis itself does not consider how these probabilities are

obtained, but takes them as given by using various heuristics

or profile data. Baah et al. [20] present probabilistic pro-

gram dependence graph to facilitate probabilistic analysis and

reasoning about uncertain program behaviours. It augments

a program dependence graph with estimates of statistical

dependences between node states, which are computed from

the test set. Unlike previous work that estimate probabilities

with heuristics or test data in whole programs, our technique

108



reasons about coverage in libraries (partial programs) without

knowing any application code and input data. In our analysis,

the coverage metric represents the fraction of paths on which

a candidate is guarded by a permission check from public

access. The coverage is computed based on an interprocedural

probabilistic control dependence analysis, starting from a

candidate of security-sensitive entities and propagating and

distributing probabilities in a backward manner. Hence, it is

a purely static approach and does not require any test cases.

AutoISES [21] is perhaps the closest to our work where

they infer security specifications (or rules). While they use

a notion of security check functions (i.e., methods similar to

checkPermission) to identify potential targets, their focus

is on semantics rules such as the set of data structure accesses

that must be protected. Our use case is more direct, we want

to identify single methods that represent the security-sensitive

operation and not a collection of rules that represent secure

behaviour.

VIII. CONCLUSION

In this paper we have presented a pragmatic approach to

identifying security-sensitive entities in the context of the Java

permission model. Furthermore, we have focused on libraries

(the JDK) where no application is available. The general

problem we solve is to identify unknown security-sensitive

methods that are protected by know sanitisers or declassifiers.

We can detect cases where these known sanitisers and de-

classifiers are potentially missing. We have implemented our

algorithm using standard program analysis techniques [12],

[11]. We have presented examples of analyses that use the

inferred security-sensitive methods to detect potential security

vulnerabilities.

REFERENCES

[1] B. Livshits and S. Chong, “Towards fully automatic placement of secu-
rity sanitizers and declassifiers,” in The 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL).
ACM, 2013, pp. 385–398.

[2] M. Backes, S. Bugiel, S. Gerling, and P. von Styp-Rekowsky, “Android
security framework: Extensible multi-layered access control on android,”
in ACSAC. ACM, 2014.

[3] N. Zeldovich, S. Boyd-Wickizer, and D. Mazieres, “Securing distributed
systems with information flow control,” in Symposium on Networked
Systems Design and Implementation, 2008.

[4] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazieres, “Making
information flow explicit in HiStar,” CACM, pp. 93–101, 2011.

[5] R. N. M. Watson, J. Anderson, B. Laurie, and K. Kennaway, “Capsicum:
Practical capabilities for unix,” in USENIX Security, 2010.

[6] T. Thomas, B. Chu, H. Lipford, J. Smith, and E. Murphy-Hill, “A
study of interactive code annotation for access control vulnerabilities,”
in Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
2015.

[7] V. Ganapathy, D. King, T. Jaeger, and S. Jha, “Mining security-sensitive
operations in legacy code using concept analysis,” in International
Conference on Software Engineering. IEEE Computer Society, 2007,
pp. 458–467.

[8] Oracle, “Secure Coding Guidelines for Java SE,”
http://www.oracle.com/technetwork/java/seccodeguide-139067.html,
April 2014.

[9] L. Gong, G. Ellison, and M. Dageforde, Inside Java 2 Platform Security,
ser. The Java Series. Addison Wesley, 2003.

[10] D. S. Wallach and E. W. Felten, “Understanding java stack inspection,”
in IEEE Symposium on Security and Privacy, 1998, pp. 52–63.

[11] M. Bravenboer and Y. Smaragdakis, “Strictly declarative specification of
sophisticated points-to analyses,” in Proceedings of the 24th ACM SIG-
PLAN conference on Object oriented programming systems languages
and applications (OOPSLA). ACM, 2009, pp. 243–262.

[12] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program
Analysis, 2nd ed. Springer, 1999.

[13] C. Cifuentes, N. Keynes, L. Li, N. Hawes, and M. Valdiviezo, “Tran-
sitioning Parfait into a development tool,” IEEE Security & Privacy,
vol. 10, no. 3, pp. 16–23, 2012.

[14] C. Fournet and A. D. Gordon, “Stack inspection: theory and variants,” in
The 29th SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 2002, pp. 307–318.

[15] M. Pistoia, A. Banerjee, and D. A. Naumann, “Beyond stack inspection:
A unified access-control and information-flow security model,” in IEEE
Symposium on Security and Privacy, 2007, pp. 149–163.

[16] M. Pistoia, R. J. Flynn, L. Koved, and V. C. Sreedhar, “Interprocedural
analysis for privileged code placement and tainted variable detection,”
in ECOOP 2005 - Object-Oriented Programming, 19th European Con-
ference, 2005, pp. 362–386.

[17] L. Koved, M. Pistoia, and A. Kershenbaum, “Access rights analysis for
java,” in Proceedings of the 17th ACM SIGPLAN conference on Object
oriented programming systems languages and applications (OOPSLA).
ACM, 2002, pp. 359–372.

[18] Y. Wu and J. R. Larus, “Static branch frequency and program profile
analysis,” in Proceedings of the 27th Annual International Symposium
on Microarchitecture, 1994, pp. 1–11.

[19] G. Ramalingam, “Data flow frequency analysis,” in ACM SIGPLAN’96
Conference on Programming Language Design and Implementation
(PLDI), 1996, pp. 267–277.

[20] G. K. Baah, A. Podgurski, and M. J. Harrold, “The probabilistic
program dependence graph and its application to fault diagnosis,”
in ACM/SIGSOFT International Symposium on Software Testing and
Analysis ISSTA, 2008, pp. 189–200.

[21] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou, “Autoises: Auto-
matically inferring security specifications and detecting violations,” in
Proceedings of the 17th Conference on Security Symposium. USENIX
Association, 2008, pp. 379–394.

109


