
Taming the Length Field in Binary Data:
Calc-Regular Languages
Norina Marie Grosch, Joshua Koenig, Stefan Lucks

Bauhaus-Universität Weimar

Abstract—When binary data are sent over a byte stream, the
binary format sender and receiver are using a “data serialization
language”, either explicitly specified, or implied by the implemen-
tations. Security is at risk when sender and receiver disagree on
details of this language. If, e.g., the receiver fails to reject invalid
messages, an adversary may assemble such invalid messages to
compromise the receiver’s security.

Many data serialization languages are length-prefix languages.
When sending/storing some F of flexible size, F is encoded at the
binary level as a pair (|F |, F), with |F | representing the length
of F (typically in bytes).

This paper’s main contributions and results are as follows.
(1) Length-prefix languages are not context-free. This might seem
to justify the conjecture that parsing those languages is difficult
and not efficient. (2) The class of “calc-regular languages” is
proposed, a minimalistic extension of regular languages with
the additional property of handling length-fields. Calc-regular
languages can be specified via “calc-regular expressions”, a nat-
ural extension of regular expressions. (3) Calc-regular languages
are almost as easy to parse as regular languages, using finite-
state machines with additional accumulators. This disproves the
conjecture from (1).

Keywords: Security, Language Theory, Data Serialization

I. INTRODUCTION

Entities who communicate use a “language” – even when

the entities are computers and the communication is binary.

When the length |F | of a data field F is unknown to the

receiver, the sender must either append an “end-postfix” (an

end-of-line sequence, a final quotation mark, . . .) to F , or

prepend a “length-prefix” (a representation of |F |). End-

postfix languages match established approaches from Formal

Language Theory well. On the other hand, a sound formal

analysis of “length-prefix” languages is still missing, and the

parsing of such languages is a common source for security

vulnerabilities.

A. Heartbleed.

There are plenty of examples of security vulnerabilities

caused by improper parsing length-prefix languages. One is

the famous Heartbleed bug: to check if a party B is still alive,

party A sends a “heartbeat” package to party B, using the

ASN.1 binary interface [8]. A well-formed heartbeat package

consists of

• a type field (indicating the “heartbeat” type),

• a field for the length �,
• a challenge C of length |C| = �, and

• an arbitrary number of padding bytes.

B shall respond C to A, without padding bytes. But B must

ignore ill-formed packages. The bug was the lack of bounds

checking for �. A malicious A could send a short heartbeat

package with a large �. Instead of ignoring this ill-formed

package, B’s �-byte response would then compromise almost

� bytes from B’s internal memory. Proper bounds checking

might avoid such bugs, but, as the Heartbleed bug shows,

this should not be left to human programmers and reviewers:

the bug had been introduced into the OpenSSL sources by a

programmer, survived an independent code-review by one of

the core maintainers, and made it into version 1.0.1 of Open

SSL 2012. It took two years until this catastrophic bug was

eventually discovered, fixed and made public [20].

B. Netstrings and other Data Serialization Languages.

In the world of programming languages, length-prefix no-

tation for strings is an almost forgotten oddity from the

early days (see the appendix). But for binary communication,

length-prefix notation is common. E.g., netstrings [2] represent

a string of length N by the following sequence:

• the number N (in decimal notation),

• the colon as a non-digit separator character “:”,

• the N -byte string itself,

• and a final comma (“,”).

“HELLO WORLD” is encoded as 11:HELLO WORLD, in-

cluding the comma after “D”. See Section VIII for a spec-

ification of netstrings using a newly introduced notation for

calc-regular expressions.

Netstrings can be nested (“used recursively” [2]). Lacking

type fields, the receiver needs to know the nesting depth in

advance. E.g., the netstring encoding of a heartbeat pack-

age with challenge C=“abc” and padding “YZ” would be

8:3:abc,YZ, (depth 1 and no type field). Similarly, a

Heartbleed attack package could look like 5:9999:,.

Dan Bernstein, the author of netstrings, motivates his ap-

proach by security benefits [2]: the “famous Finger security

hole”1 was based on reading an end-postfix string into a fixed-

size buffer without bounds checking. Bernstein claims “it is

very easy to handle netstrings without risking buffer overflow”.

This is true for unnested netstrings. But for nested ones, the

need for bounds checking is back.

The number N must be written without leading zeros

(except for the empty netstring 0:,). A unique encoding for

every string is security-wise beneficial. But not all netstring

implementations enforce this. Even the sample code from [2],

which we would consider the reference implementation, fails

to reject netstrings with leading zeros.

1Bernstein seems to refer to the Morris worm exploits from 1988 [10].

2017 IEEE Symposium on Security and Privacy Workshops

© 2017, Stefan Lucks. Under license to IEEE.

DOI 10.1109/SPW.2017.33

66

In the appendix, we give a brief overview of common data

serialization languages. Some use length-prefix notation for

strings, others use end-postfix notation. For the representation

of lengths, most languages interpret a stream of bytes as a

binary number, whereas a few use a decimal representation,

like netstrings. At a first glance, the decimal numbers are

surprising, as is netstrings’ final comma, which only seems

to serve for readability by humans. But firstly, sometimes,

readability by humans can still be beneficial in that context,

e.g., for debugging purposes. And secondly, the representation

of a number as a stream of decimal digits avoids endianness

issues and thus eases interoperable implementations.

In addition to strings, or other variably-sized blobs, most

data serialization languages support collections (arrays, lists,

etc) of objects. Collections may also be represented by length-

prefix or end-postfix notation, but one can also prefix the

number of objects in the collection, rather than the collection’s

size. We refer to this as “count prefix”.

C. PNG and other Chunk-Based File Formats.

A file format is just another kind of language to encode a

message (file content) in binary. Most file formats for video,

audio and images are “chunk based”, i.e., they internally use

length-prefix encoding for their internal data. Improper parsing

of such files is a very common source of security issues2. See

[17, Appendices A and B] for an overview of such file formats.

One example is the PNG (Portable Network Graphics) format.

PNG chunks are represented as follows:

• a four-byte binary representation of the length N (in big

endian byte order),

• a four-byte chunk type,

• a N -byte field for the chunk data,

• and, finally, a four-byte CRC checksum, to discover

transmission errors.

Again, we refer to Section VIII for a formal specification of

PNG chunks as a calc-regular language.

D. Parsing.

In the context of programming languages, one often sepa-

rates the process of recognizing the input in a given language

into two phases. “Lexing” is turning a stream of characters into

a stream of “tokens”, according to some regular expressions.

“Parsing” is analyzing the stream of tokens according to some

grammar. In the current paper, we will just refer to the entire

recognizing process as “parsing”.

The specification of binary file formats and communication

protocols, and their translation into executables, is not funda-

mentally different from the specification and compilation of

programming languages. In the early days of programming

languages, building a compiler was a considerable effort. Ac-

cording to Wirth [25], the first compiler for the programming

language FORTRAN around 1956 “was a daring enterprise,
whose success was not at all assured. It involved about 18

2We invite the reader to google for “buffer overflow png”,
“buffer overflow wav”, etc

man years of effort, and therefore figured among the largest
programming projects of the time.”

Over years, the art of compiler writing became more feasi-

ble and was better understood, in line with the underlying

theory: the linguist Noam Chomsky pioneered the idea of

formal languages and formal grammars [4]. His main result

was the famous Chomsky Hierarchy of different languages

with different expressiveness. Though Chomsky was mainly

interested in describing natural languages, his approach turned

out to be extremely useful for Compiler Construction. Other

researchers studied abstract machine models which could parse

languages from the Chomsky Hierarchy, such as Finite State

Machines for regular languages [12] (the least powerful class

of languages in the hierarchy) and Pushdown Automata [13],

[16] for context-free languages (the second least powerful

class). Already in 1960, a formalism equivalent to Chomsky’s

context-free languages was first employed for the precise

specification of the programming language ALGOL [1]. For

the parsing of binary data, and, specifically, for length-prefix

languages, a similar evolution should provide:

1) a formalism to precisely specify such languages,

2) a computationally weak abstract machine model to model

the parsing process, and

3) an algorithm to turn the specifications into such machines.

E. Related Work.

[17, Section 7] lists tools to translate binary file formats

into executables. More recent is the Hammer parsing library

for binary languages [5]. This is a pragmatic approach, without

trying to enhance the underlying theory.

The poor state of the underlying theory has been observed in

2009 by Kaminski et al [9], who argued that ASN.1 encoding

rules [8] require “a context-sensitive parser”.3 Also, the ASN.1

encoding rules are written in English prose, open to misun-

derstandings and, as [9] put it, not “in a fashion conductive

to implementing an ASN.1 parser with a parser generator”. In

2011, Sassaman et al [15] considered a language-theoretical

view of security issues and proposed to “starve the Turing

beast”, i.e., to employ parsers of the least computational power

required to parse the language at hand, and to design languages

(or protocols) parsable with minimal computational power.

This also allows to verify “parser computational equivalence”

[15], i.e., to formally verify that different parties use exactly

the same language. The line of research has been continued

in [14], [3], [11].

In 2012, Underwood and Laib [17] studied chunk-based

file formats, such as PNG. They proposed attribute grammars

for format specification, with attribute rules being C program

fragments. This approach benefits from the ability to feed such

grammars into existing parser generators. However, the usage

of Turing equivalent attribute rules for language specifications

seems to be an overkill. It does not match the simple structure

most such languages have, and it violates the rules from [15]

(which Underwood and Laib did not seem to know about).

Furthermore, the approach is bound to a specific programming

3This is theoretically incorrect, but practically valid, cf. Remark 3(d,e)
below.

67

language, and restricted to generate a recognizer for the

language at hand, i.e., the code for the receiver of the message.

A declarative approach might also be useful to generate or at

least verify the sender’s code.

F. Roadmap

This paper is organized as follows.

After the current introduction, we recall some core def-

initions from Formal Language Theory, related to regular

expressions and regular languages in Section II. In Section III,

we show that netstrings are not regular, and not even context-

free. The proof easily generalizes to other languages with

length-prefix and count-prefix notation. Section IV introduces

a new class of languages, calc-regular languages, which are

similar to regular languages but can cope with length-prefix

and count-prefix notation. Similar to regular expressions, we

also define calc-regular expressions in Section IV.

Regular languages can be parsed by Finite State Machines

(FSMs). Section V introduces calc-FSMs, enhanced FSMs to

parse calc-regular languages. We define several different types

of calc-FSMs, and the strongest one is actually too powerful

for our purposes. In Section VI, the relationship between calc-

regular languages and languages from the Chomsky Hierarchy

is studied, with a focus on deterministic and nondeterministic

context-free languages. Section VII analyses the properties of

the class of calc-regular languages. E.g., the concatenation of

two calc-regular languages is calc-regular, while there are calc-

regular languages who’s union is not calc-regular.

After defining calc-regular languages and studying their

formal properties, we give some hints how to apply our ideas

and results for practical problem solving. Section VIII presents

an initial outline for a meta-language,

• to formally specify calc-regular languages, without rely-

ing on English prose, and

• to use such a specification as the input for a parser

generator, such that parsers for calc-regular languages

would not need to be written by hand.

We give some examples for calc-regular data serialization

languages and file formats specified using the meta-language.

Section IX concludes and gives directions for future research.

In the appendix, we elaborate on early versions of the FOR-

TRAN programming language, which actually used length-

prefix notation for string constants, and we compare different

data serialization languages with respect to their use of length-

prefix, count-prefix and end-postfix notation. As it turns out,

most such languages are using length-prefix or count-prefix

notation and are thus not context-free. This highlights the need

for an approach like ours.

II. REGULAR EXPRESSIONS, LANGUAGES, AND

FINITE STATE MACHINES (FSMS)

We assume the reader to be familiar with core notions from

Formal Language Theory, see, e.g., [7]. But since our approach

is based on extending and enhancing regular languages, we

specifically recall the formalism related to regular languages.

By Σ, we denote a finite alphabet of input symbols. A language

of words over Σ is a subset of Σ∗.

Definition 1. Regular expression over Σ, and the languages
derived from regular expressions are defined as follows:
• ε is a regular expression, defining the language L(ε) =

{ε} which consists of the empty word,
• 0 is a regular expression with L(0) = {},
• for a ∈ Σ, a is a regular expression with L(a) = {a},
• if r and s are REs, then so is r|s with

L(r|s) = L(r) ∪ L(s)

(union),
• if r and s are REs, then so is rs with

L(rs) = L(r)L(s)

(concatenation),
• if r is a RE, then so is r* with

L(r∗) = L(ε) ∪ L(r) ∪ L(rr) ∪ . . .

(Kleene-star), and
• if r is a RE, then so is (r) with

L((r)) = L(r)

(use of brackets).
As shorthand notation, we write r+ for rr∗, and ri with i >
0 for rri−1, and r0 for ε. No other expressions are regular
expressions over Σ.

Note that we treat “ε”, “0”, “|”, “(“, “)” etc as “meta-

symbols”, which are distinct from all input symbols (or

“terminals”) in Σ. The definition of regular languages is

straightforward:

Definition 2. A language L ⊆ Σ∗ is regular, if a regular
expression r exists with L = L(r).

The main formal tool to parse regular languages are finite

state machines.

Definition 3. A finite state machine (FSM) is a 5-tuple M =
(Q,Σ, δ, q0, F), where Q is a finite set of states, Σ is the input
alphabet (as before) δ is the transition relation, i.e., a function

δ : Q× Σ → 2Q,

q0 ∈ Q is the start state, and F ⊆ Q is the set of accepting
states.

An input word w = a1a2 . . . an is accepted by a FSM, if
there is a sequence of states qi ∈ δ(qi−1, ai) with qn ∈ F . If
qn �∈ F , then w is rejected. If M is a FSM, then L(M) is the

language of words over Σ which are accepted by M .

Note that the acceptance definition implies the FSM to

detect the end of its input.

Definition 4. A FSM M = (Q,Σ, δ, q0, F) is deterministic,
if for every (q, a) ∈ Q × Σ there is at most one possible
transition, i.e., |δ(q, a)| ≤ 1.

Theorem 1 summarizes well-known results from Formal

Language Theory (see any standard textbook on Formal Lan-

guage Theory, e.g., [7]). Fact (a) implies that FSMs are a

good tool to parse regular languages, (b) shows that for FSMs,

68

nondeterminism does not improve computational expressive-

ness, (d) explains the relationship between regular and deter-

ministic context-free languages, (e) shows that for context-

free languages, nondeterminism does improve computational

expressiveness. Results (c) and (f) are the famous pumping
lemmas for regular and context-free languages, respectively.

Theorem 1. The following are well-known results from Formal
Language Theory:
(a) A language L is regular if and only if a FSM M with

L(M) = L exists.
(b) If M is a FSM, then a deterministic FSM M ′ exists such

that L(M) = L(M ′).
(c) If L is a regular language, then P exists, such that all

w ∈ L with |w| > P can be written as the concatenation
w = xuz, of substrings x, u, y ∈ Σ∗, such that (1) |u| ≥ 1,
(2) |xu| ≤ n, and (3) for all i ≥ 1, the string xuiy is in
L.

(d) All regular languages are deterministic context-free. The
language aibi is deterministic context-free, but not regular.

(e) The language aibj with j ∈ {i, 2i} is context-free, but not
deterministic context-free.

(f) If L is a context-free language, then P exists, such that all
w ∈ L with |w| > P can be written as the concatenation
w = xuyvz of substrings x, u, y, v, z ∈ Σ∗, such that
(1) |uyz| ≤ P , (2) |uv| ≥ 1 and (3) for all i ≥ 1, the
string xuiyviz is in L.

III. LENGTH-PREFIX NOTATION IS NOT CONTEXT-FREE

Below, we prove that netstrings, even without nesting, are

not context-free.

As discussed below, this easily generalizes to other forms

of length-prefix notation, if the length is unbounded. Recall

that netstrings start with a decimal number n, followed by “:”,

followed by a string of length n, finished by a “,”. Without the

constraint for the string to be of length n, it would be easy to

write a regular expression for netstrings. If the length n would

be encoded by unary notation, one could specify netstrings by

a context-free language. But netstrings with decimal numbers

are not context-free:

Theorem 2. The language N of well-formed netstrings is not
context-free.

Proof. Assume the language of well-formed netstrings to be

context-free. The characters “9”, “:”, and “,” are specific

terminals from the input alphabet Σ, the symbol 〈letter〉
represents an arbitrary terminal.

Let w =“9m:〈letter〉n,” be a sufficiently long well-formed

netstring. Using the pumping lemma (i.e., Theorem 1(f)),

we can write w = xuyvz as a sequence of substrings

x, u, y, v, z ∈ Σ∗, such that all wi = xuiyviz are well-formed

netstrings xuiyviz =“9Mi :〈letter〉Ni ,”.

Each wi defines two numbers: Pi = 9Mi for the number

encoded before the first “:”, and Ni for the number of letters

following the first “:”, excluding the final “,”. If wi is well-

formed, then Pi = Ni.

Neither x nor u can hold the first “:”, else Pi would be the

same for all i, while the Ni would be different. Thus, x and u

hold zero or more “9”-digits, but nothing else. Also, z cannot

hold the first “:”, else Ni would be the same for all i, while

the Pi would be different. The first “:” is either in y or in v.

All in all, we can write Pi as Pi = 10α+i|u| − 1 for some α
and Ni as Ni = β + i|v| for some β. From Ni = β + i|v|, it

follows that Ni+1 −Ni = |v| is constant, regardless of i.
Furthermore, |u| > 0; else Pi would, again, be the same for

all i.
Using Pi = 10α+i|u| − 1, and setting A = 10|u|, we get

|v| = P2 − P1 = 10α+2|u| − 10α+1|u|

= 10α ∗A2 − 10α ∗A1

= P3 − P2 = 10α+3|u| − 10α+2|u|

= 10α ∗A3 − 10α ∗A2

The equation P2 − P1 = P3 − P2 is equivalent to the cubic

equation 10α ∗ (A3−2A2+A) = 0. Since A = 10|u| �= 0 and

10α �= 0, we can transform this into the quadratic equation

A2 − 2A+ 1 = 0.

Its only solution is 10|u| = A = 1, i.e. |u| = 0. This is a

contradiction to |u| ≥ 1 – and thus to our initial assumption of

the language of well-formed netstrings being context-free.

Remark 3.
(a) It is straightforward to generalize the proof for any base-

B encoding for all B ≥ 2. For the largest digit D =
B − 1, replace the prefixes “999. . . 9” by “DDD. . . D”,
and replace the powers of 10 by powers of B.

(b) The proof employs numbers “999. . . 9” (or “DDD. . . D”)
with the same digit everywhere. Thus, the order of digits
in the length representation does not matter.

(c) Similarly, the comma at the end does not matter for
context-freeness.

(d) However, the proof is not applicable to languages with
an upper bound on N . In fact, length-prefix languages
with a maximum length are finite – and thus theoretically

context-free (and may even be regular). E.g., the bound
for ASN.1 is N ≤ 28∗126 − 1.

(e) Nevertheless, we argue that it practically makes sense to
parse these languages as calc-regular languages (see be-
low) or similar. This is comparable to, e.g., arithmetic
expressions with at most N pairs of brackets for some
large but fixed constant N . Even though the language is
regular, the corresponding FSM would be absurdly large,
and the tools for general arithmetic expressions would be
much more appropriate, in practice.

IV. CALC-REGULAR LANGUAGES AND EXPRESSIONS

A. Motivating Example

For simplicity, consider relaxed netstrings, where the length

field is allowed to have leading zeros. We use “:” and “,”

as specific nonterminals, “〈digit〉” is one of the nonterminals

in {“0” . . . ”9”}, and “〈letter〉” is an arbitrary nonterminal.

The attempt to model relaxed netstrings via regular languages

leads to a nonempty sequence of digits, followed by a colon

“:”, followed by an arbitrary number of letters, followed by a

comma “,”:

69

〈digit〉+ : 〈letter〉*,

This, of course, misses the context-sensitive constraint that the

length encoded before the first colon (“:”)4 is the number of

letters between that first colon and the final comma (“,”). To

formalize such constraints, we must enhance regular expres-

sions:

(〈digit〉+).decimal : 〈letter〉decimal.

This means that the number N , encoded in decimal by the

sequence of digits before the first colon, is the same as the

number of characters between the first colon and the last

comma.

B. Prefix-Freeness

There is one problem, though. A machine parsing the above

expression will first have to read one character beyond the final

digit, then detect the colon and then conclude that the character

before that colon has been the final digit. I.e., it can call the

value-oracle only after having read one character beyond the

last digit. We prefer to avoid this, and thus restrict ourselves

prefix-free languages.

Definition 5. A language L over Σ is prefix-free, if, for all
w ∈ L, there exists no (v, x) ∈ L× Σ with w = vx.

A regular expression r is prefix-free, if the language L(r)
is prefix-free.

In other words, L is prefix-free, if, for all words w in L,

there is no prefix v of w in L, except for v = w. Specifically,

if the empty word ε is in L, then L = {ε}.

We will require the subexpressions of calc-regular languages

to be prefix-free. Namely, for a subexpression like x.f , as in

(〈digit〉+).decimal with x =(〈digit〉+) and f = decimal, we

will require x to be prefix-free.

Thus, we rewrite the above expression for netstrings as

((〈digit〉+) :).decimal 〈letter〉decimal.

This means, the final colon is, in some sense, part of the

decimal number, though the value-oracle “decimal” will just

ignore this non-digit.

The restriction to prefix-free languages may seem to con-

strain our approach, in comparison to the established results

from Formal Language Theory. Theoretically, regular lan-

guages such as 〈digit〉+ and non-regular context-free languages

such as aibicj are not prefix-free. But actually, the established

formalism from Language Theory assumes a parser to know

the end of its input. This is usually formalised by extending

the alphabet Σ by an additional character ⊥ �∈ Σ, which is

assumed to be the final character of every word. This way, the

input is implicitly prefix-free: Instead of parsing 〈digit〉+ or

aibicj , one then parses 〈digit〉+⊥ or aibicj⊥. Thus, we claim

that the restriction on prefix-free languages does not really

alienate our approach from established results from Formal

Language Theory – we just don’t assume a pseudo-terminal

like ⊥ to mark the end of the input.

4Note that the subexpression 〈letter〉* may also contain colons.

For this reason, we will claim that calc-regular languages

are a superset of regular languages. Whenever a language L′ is

not prefix free, like 〈digit〉+, we use the same sleight of hand

as Formal Language Theory does, traditionally, and assume

the regular language L = {w⊥ | w ∈ L′} instead of L′ itself.

The “trick” is that L′ with a method to discover the end of a

word is the same language as L without such a method.

The “trick” is not applicable to subexpressions inside a

longer expression, because inserting a ⊥-symbol would really

change the language. E.g., consider the concatenation of two

numbers, i.e., the language L2 defined by

〈digit〉+〈digit〉+
Even if the parser knows the end of an input word, it has

no way to know when the first 〈digit〉+ subexpression ends.

Thsi means that, while the language L2 is well-defined, it is

ambiguous. When parsing the word, say, “123” from L2, there

is no way to dedice if the two input numbers are (12, 3) or

(1, 23). The restriction to prefix-free subexpressions prevents

such ambiguity.

C. Calc-Regularity

Below, we formalise a new notation:

• r.f means “read a word x form L(r) and compute a value

f(x) ∈ {0, 1, 2, . . .}”,

• t1#f means “read a word y from L(t1), with length

|y| = f(x), and

• tf2 means “read the concatenation of f(x) words from

L(t2)”.

We call the function f a “value-oracle”.

Definition 6. Calc-regular expressions r over Σ and the
languages L(r) derived from them are defined as follows.
• If r0 is a prefix-free regular expression, then r0 is a calc-

regular expression, and the calc-regular language derived
from r0 is the regular language L(r0)
(regular base-case),

• if r and s are calc-regular expressions, then so is rs with

L(rs) = L(r)L(s)

(concatenation),
• if r is a calc-regular-expression, then so is (r) with

L((r)) = L(r)

(use of brackets).
• If q, r, s, t2, and u are calc-regular expressions, t1

is either a regular or a calc-regular expression, and a
function f : L(r) → {0, 1, 2, . . .} is defined, then both r1
and r2 with

r1 = q(r.f)s(t1#f)u and

r2 = q(r.f)s(tf2)u

are calc-regular expressions.
Given the calc-regular languages L(q), L(r), L(s),
L(t2), and L(u), the calc-regular or regular language

70

L(t1), and a value-oracle f , the calc-regular languages
L(r1) and L(r2) are defined as follows.

L(r1) = L(q)L(r)L(s)(L(t) ∩ 〈letter〉f)L(u),
L(r2) = L(q)L(r)L(s)L(tf)L(u).

I.e., a word w1 ∈ L(r1) is the concatenation of
– a word from L(q),
– a word x from L(r),
– a word from L(s),
– a word from L(t1) ∩ 〈letter〉f(x), and finally
– a word from L(u).

Similarly, a word w2 ∈ L(r2) is the concatenation of
– a word from L(q),
– a word x from L(r),
– a word from L(s),
– f(x) words from L(t2), and finally
– a word from L(u).

For calc-regular expressions, the same shorthand-notation can
be used as for regular expressions. No other expressions are
calc-regular expressions over Σ.

Remark 4. By definition, the language L(r0) is prefix-free.
The language L(t1) ∩ 〈letter〉f(x) is prefix free, because all
words from that language have the same length. The concate-
nation L(a), L(b) of prefix-free languages L(a) and L(b) is
trivially prefix-free.

By induction, calc-regular languages are prefix-free.

D. Comments

Definition 6 is similar in structure to its counterpart for

regular expressions, with two exceptions. We do not define

the union and Kleene-star for calc-regular expressions, and

we have new notations related to value-oracles: the #-notation

in r1 and the superscript-notation in r2.

The notations for both r1 and r2 occur in pairs:

r1 = . . . r.f . . . t#f . . .

and

r2 = . . . r.f . . . tf . . .

If x ∈ L(r), then f(x) is a nonnegative integer. Whenever

a subexpression r.f occurs exactly one of either t#f or tf

must follow. And neither t#f nor tf are allowed without one

previous r.f .

The “#” notation in r1 matches the requirement of some data

field being exactly f(x) letters long (in practice, usually f(x)
bytes). This is a very natural approach to model length-prefix

notation. The superscript notation in r2 defines a sequence of

f(x) words from L(t). We need it to model languages with

count-prefix notation.

Note that a calc-regular language L(r) depends on both

r and the value-oracles. We assume the value oracles to be

implied and fixed. Changing a value oracle would change the

language L(r), even without changing the expression r. In

typical applications, the value-oracles are indeed well-defined

and simple, such as decimal notation, or binary representation

either in big- or little-endian order, etc

V. CALC-REGULAR FINITE-STATE MACHINES

(CALC-FSMS)

A. Definitions

Given calc-regular expressions r, and calc-regular languages

L(r), we need calc-FSMs to parse calc-regular languages. In

fact, we will define different types of calc-FSMs, and we start

with the seemingly most powerful Type-1 machines, which are

a straightforward extension of nondeterministic FSMs from

Formal Language Theory.

As we will show below, Type-1 is more powerful than Type-

2. It is trivial to transform a Type-2 machine into Type 1,

accepting the same language. Type-3 is equivalent to calc-

regular languages. We conjecture that Type-2 is more powerful

than Type-3. We show how to transform Type-3 machines into

Type-2 ones accepting the same language. See Figure 1 .

Fig. 1. Overview of calc-FSMs

Definition 7. A Type-1 calc-FSM is a FSM M1 =
(Q,Σ, δ, q0, F, A) with k ≥ 0 accumulators stored in the set
A.

An accumulator acc is either in string state or in numeric
state. Initially, acc is in string state and holds the empty string
ε ∈ Σ∗. S = { acc.store, acc.dec, acc.count} are statements,
where .dec is used for ˆ and .count for #. Statements and
comparisons from C = { acc = 0 and acc �= 0 } are
performed/evaluated as follows.

In string state,

acc.store appends the current input a ∈ Σ to the
string w ∈ Σ∗ in acc, which then holds wa ∈ Σ∗.
If acc is in string state, and the word w ∈ Σ∗ is in
acc, and then either acc.dec, acc.count or one of the
comparisons acc = 0 and acc �= 0 is called, then

1) the word w is replaced by the number num(w) ∈
{0, 1, 2, . . .}, where num: Σ∗ → {0, 1, 2, . . .}
denotes the corresponding value-oracle,

2) and then the statement/comparison is performed/e-
valuated accordingly.

In numeric state,

acc.dec and acc.count decrement the number in acc
by one. If acc is already zero, the input is rejected.
The comparison acc = 0 and acc �= 0 are evaluated
the obvious way. If the statement is acc.store, then
• for acc �= 0, the input is rejected, and
• for acc = 0, the state of acc is changed to string

state, with acc holding the empty string, before
performing acc.store.

The transition function is a function δ : ((Q× Σ× 2(A×S) ∨
(Q× C)) → 2Q.

71

Given an input w = a1a2...an is accepted by a Type-1 calc-
FSM, if there is a sequence of states qi ∈ δ(qi−1, ai, si) with
qn ∈ F and all accumulators acc ∈ A : acc = 0. If qn /∈ F or
acc �= 0, then w is rejected. If M1 is a Type-1 calc-FSM, then
L(M1) is the language of words over Σ which are accepted
by M1.

If the meaning is clear from context and our machine has
one single accumulator, we may briefly write “store”, “-1”,
“=0”, and �= 0 for the commands and comparisons.

Definition 8. A Type-2 calc-FSM is a deterministic Type-1
calc-FSM, if for every (q, r, s) ∈ Q × Σ × 2(A×S) and for
every (q, c) ∈ Q × C is at most one possible transition, i.e.
|δ(q, r, s)| ≤ 1, |δ(q, c)| ≤ 1.

The difference between determinism and non-determinism

in calc-FSMs is analogous to regular FSMs. In fact, a Type-

1 calc-FSM with 0 accumulators is a nondeterministic FSM,

and a Type-2 calc-FSM with 0 accumulators is a deterministic

FSM.

While Type-1 and -2 calc-FSMs seem to be a natural

approach to parse calc-regular languages, they are actually a

bit too powerful, which is why constrain Type-1 calc-FSMs in

a different way.

Definition 9. A Type-3 calc-FSM M4 = (Q,Σ, δ, q0, F, A) is
a FSM with k ≥ 0 accumulators. The transition function is a
function δ : Q × (Σ∗ × A) → Q. Therefore, a Type-3 calc-
FSM can have calc-regular expressions on the edges, but no
statements for changing an accumulator. Furthermore, they
are restricted to have at most one transition from and to a
state:

∀qi ∈ Q : (|δ(q, w) → q′| ≤ 1 : q = qi)

∧ (|δ(q, w) → q′| ≤ 1 : q′ = qi)

All transitions concatenated to a c-RE define a language,
which is the exact language the Type-3 calc-FSM accepts.

In the remainder of the current section, we will study the

relationship between our different types of calc-FSMs and their

relationship to calc-regular languages.

B. A gap between Type-1 and Type-2

Theorem 5. For every Type-2 calc-FSM exists a Type-1 calc-
FSM, which accepts the same language.

Proof. All Type-2 calc-FSM can be seen as Type-1 calc-FSM,

because determinism is a subset of non-determinism.

In contrast to regular FSMs, nondeterministic calc-FSMs

are more powerful than deterministic ones, which make Type-

1 calc-FSMs to a superset of Type-2 calc-FSMs.

Theorem 6. There are languages a Type-1 calc-FSM accepts,
which no Type-2 calc-FSM can accept.

Proof. In Figure 2 you can see a Type-1 calc-FSM which

accepts the language aibjck with (i = j or j = k). Basically,

the Type-1 FSM consists of two different FSMs, one for the

language aibick and the other one for the language aibkck. The

Fig. 2. A Type-1 calc-FSM for the language {aibjck|(i = j) ∨ (j = k)}.

first operation of the Type-1 calc-FSM is a nondeterministic

choice between the deterministic machines.
No Type-2 calc-FSM can accept this language. We defer

the proof to Theorem 12. Thus, {aibjck|(i = j) ∨ (j = k)}
is an example for a language which a Type-1 calc-FSM can

accept, but no calc-2 FSM.

Theorem 6 appears to be a heavy drawback for us. We

are searching for languages, which can be parsed efficiently
on realistic machines. For ordinary regular languages, non-

deterministic FSMs are a good model, because they are not

more expressive than deterministic FSMs. For the parsing

of calc-regular languages, Type-1 calc-FSMs, the immediate

counterpart to nondeterministic FSMs are too strong, and we

have to restrict ourselves to Type-2 calc-FSMs, at best.

C. Type-3 calc-FSMs are equivalent to calc-regular languages
Theorem 7. For every calc-regular expression r exists a Type-
3 calc-FSM M with L(r) = L(M).

Proof. A Type-3 calc-FSM M has only transitions δ(q, w) →
q′ where w is a calc-regular expression.

So we design M with two states q0 and q1, q0 as initial state

and q1 as final state. M has exactly one transition δ(q0, r) →
q1 and the alphabet Σ of M is equal to Σ of r.

The accepting language for a Type-3 calc-FSM is defined

by the c-RE of the concatenated transitions. M has only one

transition with r, so the accepted language L = L(M) =
L(r).

Theorem 8. For every Type-3 calc-FSM M exists a calc-
regular expression r with L(M) = L(r).

Proof. A Type-3 calc-FSM has only transitions in form of

∀δ(q, r) → q′ ∈ δ where r is a c-RE. We can concatenate

all ri to the calc-regular expression r of the Type-3 calc-FSM

with the algorithm of Floyd and Warshall.

Therefore, we enumerate all states of the Type-3 calc-FSM

with 1, ..., n. The algorithm builds a calc-regular expression

r
(0)
i,j , r

(1)
i,j , ..., r

(n)
i,j for all i, j ∈ {1, ..., n} step by step.

The algorithm corresponds to the one for transforming a

deterministic FSM into a RE [7]. We only have to change the

regular expressions to calc-regular expressions.

The result is r = r
(n)
1,j1

+ ...+ r
(n)
1,jk

for q1 as initial state and

k = 1, ..., n. Hence, L(r) = L(M), because it is analogical

to regular languages.

72

D. Transform Type-3 calc-FSMs to Type-2 calc-FSMs

Algorithm 9. Given a Type-3 calc-FSM M we can transform
it into a Type-2 calc-FSM M ′. At first M ′ = M and is a
Type-3 calc-FSM, it will be processed to a Type-2 calc-FSM.
M ′ has only transitions δ(q, a) → q′ where a is a c-RE.

Assume every c-RE is in form of r1 = q(r.f)s(t1#f)u or r2 =
q(r.f)s(tf2)u, like we defined in Definition 6 with q, s, u ∈
{Σ∗|∅|r1|r2}, r, t ∈ {Σ∗|r1|r2} and f ∈ AM .
Step 1: Type-3 to Intermediate Machine
• Expand M ′,

• repeat until ∀δ(q, a, ∅) → q′ ∈ δM ′ : a is a regular
expression or a ends with an accumulator statement.

• Since all subexpressions q, r, s, t2 and u are prefix-free,
the behaviour of our Intermediate Machine is well defined
(reading subexpressions and moving from node to node).

Step 2: Intermediate Machine to Type-2+ε
For q, r, s, t2 and u

• either the subexpression is prefix-free regular, then we
can generate the matching deterministic FSM D , else
the subexpression is (only) calc-regular, then we apply
the algorithm recursively (see Step 3).

• ∀δD(q, w) → q′ : δM ′(q, w, ∅) → q′

For r.f

• we have to attach f.store to every edge in the determin-
istic FSM of r

For tf2
• we have to attach f.dec to all transitions with

δDt2
(qM ′0, w) → q′ and f = 0 for every outgoing

transition and a backwards transition with f �= 0 from
all final states of Dt2 to the initial state of Dt2

For t1#f

• If t1 is prefix-free, then enhance the outgoing edge of
Dt1 by reading the pseudo-symbol ⊥ and an ε-transition
backwards from the final states to the initial states,

• otherwise t1 is prefix-free but regular, so we get a
deterministic FSM for t∗1⊥.

• In either case we have a machine accepting t∗1⊥.
Now we have to attach f.count to every edge in Dt1 and
f = 0 to all outgoing edges and f �= 0 to all backwards
transitions δDt2

(qM ′n, w) → qM ′i, i ∈ 0, . . . , n

Step 3:
If q, r, s, t2 or u is calc-regular and not also regular, we have
to consider (b ∈ {q, r, s, t1, t2, u}):
• b.f : for every new transition δ(q, c, s) → q′ : s =

{s, f.store}
• bf : non-hereditary, which means subexpressions of b

do not have to consider the statements from ”parent”-
expressions, and is ignored for expressions in u

• b#f : for every new transition δ(q, c, s) → q′ : s =
{s, f.count}

Step 4: Eliminate ε-transitions
For reasons of clarity we used ε-transitions in Step 2. We can
eliminate all ε-transitions, when !∃δ(q, ε, ∅) → q′ ∧
(� ∃δ(q, c, ∅) → q′ : c �= ε) by merging q and q′ to one state.
This is the only case in which ε-transitions can appear in
this algorithm. By eliminating them the Type-2+ε calc-FSM
become a Type-2 calc-FSM

73

It would be interesting to prove or disprove the following.

Conjecture. There exists a Type-2 calc-FSM M2, such that
the language L(M2) accepted by M2 cannot be accepted by
any Type-3 calc-FSM.

VI. CALC-REGULAR LANGUAGES AND THE

CHOMSKY HIERARCHY

As we elaborated in the introduction, the state-of-the-

art in defining and parsing languages is heavily influenced

by the famous Chomsky hierarchy. The most general class

of languages in the Chomsky hierarchy are the recursively

enumerable languages, followed by context-sensitive, context-

free and regular languages. The following table lists some

of the main results for such languages, which respect to two

problems:

1) The word problem: Given a word w ∈ Σ∗, is w in the

language?

2) The problem of computational equivalence: Given two

machines (i.e., parsers) accepting a language from some

class of languages. Are both machines accepting the same

language?

Following the reasoning from [15], the ability to solve these

two problems is important for security applications.

The following table summarizes the main results for the

languages from the Chomsky hierarchy, with an additional

distinction between general context-free languages, and the

subset of deterministic context-fee languages.

“word problem” “computational
is w in L? equivalence”

rec. enumerable undecidable undecidable
context-sensitive exponential undecidable
context-free cubic undecidable
det. context-free linear decidable
regular linear decidable

O(1) storage

So how does our new class of languages relate to the

classes from the Chomsky hierarchy? By definition, a regular

expression is also a calc-regular expression (but not vice

versa). 5 Thus, calc-regular languages are a superset of regular

languages.

Furthermore, from Theorem 2 we know a calc-regular

language N, the language of well-formed netstrings, which

is not regular – and not even context-free. Thus, calc-regular

languages are a proper superset of regular languages. Are they

also a superset of context-free languages? As it turns out, the

answer to this question is negative: There exists a context-

free language and even a deterministic context-free language,

which is not calc-regular.

The following lemma is some form of a calc-regular coun-

terpart to the famous pumping lemmas for regular and context-

free languages (Theorem 1(c,f)). We will use the lemma to

prove that certain languages cannot be parsed by a Type-2

calc-FSM and thus are not calc-regular.

5Recall the “trick” of assuming a final ⊥-symbol at the end of every word.

Lemma 10. Consider a Type-2 calc-FSM M2 with α accumu-
lators and a set Q of (FSM-) states. Consider inputs v1w, v2w,
. . . . Assume that, after reading any of the vi, all values stored
in any of the α accumulators are in the range {0, . . .m− 1},
for some fixed threshold m. I.e., each accumulator can hold
any of at most m different values. If there are more than

mα ∗ |Q|
choices for the vi, then some vi �= vj exist, such that if M2

accepts viw, then M2 also accepts vjw.

Proof. In principle, if α ≥ 1, the state space of M2 is infinite.

But if we restrict the infinite number of choices for each

accumulator to m, then there are mα different α-tuples of

values in the entire set of accumulators, and mα∗|Q| different

(α+1)-tuples of accumulator-values and state. Thus, there are

only mα ∗ |Q| different states the machine can be in, after

reading vi.

As the first attempt, we will consider the language L=anbn,

which is a well-known textbook example for a deterministic

context-free language, which is not regular. As it turns out, L
is calc-regular.

Theorem 11. The language L=anbn is a calc-regular lan-
guage.

Proof. Let cnt be the (simple) value-oracle which counts the

length of its input. For the language L = anbn, the c-RE is

a.cnt bcnt,

since cnt(ai) = i and bcnt(ai) = bi.

Note that the c-RE

a.cnt b#cnt

also generates the language anbn.

The second attempt for a (nondeterministic) context-free

language, which is not regular, is the language aibjck, with

the constraint (i = j or j = k). As it turns out, this language

is not calc-regular.

Theorem 12. The language aibjck with (i = j or j = k)
can not be parsed by a Type-2 calc-FSM. Thus, it is not a
calc-regular language.

Proof. Consider a calc-FSM with α accumulators and |Q|
states. It must accept inputs of the form anbnc∗. Lemma 10

implies that there is at least one accumulator which holds a

number m− 1 (or larger) with

mα ≥ n

|Q| .

But then, this calc-FSM cannot accept a word anbkck for

small k and large enough n. Namely, when m− 1 > 2k, that

accumulator will still store a nonzero number after reading

bkck, as with each input symbol, the accumulator can only be

deceased by one.

Thus, after reading anbkck, there is at least one accumulator

with a nonzero storage. By the definition of calc-FSMs, the

machine rejects.

74

From Theorem 12, we can conclude that the calc-regular

languages are not a superset of context-free languages in

general. This is good news for us, because otherwise we

would have to expect at least cubic run time (in the worst

case) for parsing calc-regular languages, and the computational

equivalence problem would be undecidable.

As it turns out, calc-regular languages are not even a

superset of deterministic context-free languages. We define a

language M⊆ { “0”, “(”, “)”, “[”, “]” }∗ of “mixed brackets”.

The grammar6 for M uses a start symbol S and can be written

by three productions S → 0, S → (S), S → [S]. In short, M
consists of a (possibly empty) sequence of opening brackets

“‘(” or ‘[”, followed by “0”, followed by a sequence of closing

brackets, which must match exactly the corresponding opening

brackets. M is deterministic context-free. A deterministic

pushdown automata will push all the opening brackets onto

the stack, then read the “0”, and, when reading the closing

brackets, check if they match the opening brackets on the

stack. Even though this language is quite simple, it is not

calc-regular:

Theorem 13. The language M is not calc-regular.

Proof. Consider an input w“0”v, with w being a sequence of

n opening brackets from { “[” “(” }, v being a sequence of

n closing brackets. For any such w, there is exactly one v,

such that w“0′′v ∈ M . Thus, a calc-FSM for M must, after

reading w, be able to distinguish all the 2n different choices

for v.

For large enough n, there is at least one input v for this

machine, such that there is at least one accumulator holding

a number greater than n. This can be seen by applying

Lemma 10, After reading the n characters from v, the ac-

cumulator will still not be zero. By the definition of calc-

FSMs, the input must be rejected if there is a nonzero value

in an accumulator. Thus, this machine will reject v“0′′w,

regardless of w holding the closing brackets matching the

opening brackets in v or not.

To summarize the results from the current section: calc-

regular languages are orthogonal to context-free languages.

There exist languages, such as N (well-formed netstrings) from

Theorem 2, which are calc-regular and not context-free. There

are languages, such as M (mixed brackets) from Theorem 13,

which are deterministic context-free and not calc-regular. And,

there are languages such as L=anbn from Theorem 11, which

are both deterministic context-free and calc-regular, but not

regular. See Figure 3.

VII. PROPERTIES OF CALC-REGULAR LANGUAGES

How expressive are calc-regular languages? How similar are

they to regular languages, regarding closure and decidability

properties? In this section, we will scrutinize calc-regular

languages and present some first answers.

Theorem 14. Calc-regular languages are closed under con-
catenation.

6Once again: We assume the reader to be familiar with core notions from
Formal Language Theory, as, e.g., in [7].

regular

regular
calc−

context−free context−free
deterministic

N
M L

Fig. 3. Orthogonality of calc-regular and context-free languages

Proof. Given the calc-regular languages L1, L2 and their calc-

regular expressions r1, r2 we can construct a Type-3 calc-FSM

M , which accepts L1L2.

M has three states Q = {q0, q1, q2}, q0 is the initial and q2
the final state. We add the transitions δ(q0, r1, ∅) → q1 and

δ(q1, r2, ∅) → q2 to M . Due to the definition of Type-3 calc-

FSMs (Definition 9), the accepted language is the language of

the concatenated transitions, so L(M) = L(r1r2).
Hence calc-regular languages are closed under concatena-

tion.

Theorem 15. Calc-regular languages are not closed under
union.

Proof. Given the languages L1 = {aibjc∗|i = j} and L2 =
{a∗bjck|j = k}.

Assume we add c∗ to the calc-regular language anbn and

get the language anbnc∗. This language is still calc-regular,

because calc-regular languages are closed under concatenation,

as shown in Theorem 14 . Thus, L1 and L2 are calc-regular.

The union of the two languages would be L∪ = {aibjck|i =
j or j = k} and we already showed in Theorem 12 that this

language can’t be parsed by a Type-2 calc-FSM, therefore it

is not a calc-regular language.

Hence, calc-regular languages are not closed under union.

Since calc-regular languages are not closed under union

(Theorem 15), we conjecture the following.

Conjecture. Calc-regular languages are not closed under
Kleene star.

The definition of the Kleene star L∗ operation is based on

a massive usage of the union operation:

L0 = {ε}, L1 = L,Li+1 = {wz|w ∈ Li ∩ z ∈ L} for i < 0

L∗ =
⋃

i∈N
Li = ε ∪ L1 ∪ L2 ∪ L3 ∪ ...

Thus, the above conjecture would seem obvious. However,

we do not have a conclusive proof. Theorem 15 only proves

that some calc-regular languages L1 and L2 exist, where the

union L1∪L2 is not calc-regular. The theorem does not imply

anything for the specific Li from the definition of the Kleene-

star operation.

VIII. A META-LANGUAGE AND PRACTICAL EXAMPLES

The current paper’s focus is on understanding the issues

related to specifying length-prefix notation (or count-prefix).

75

Beyond the theoretical results above, a long-term goal is a non-

ambiguous meta-language to specify calc-regular languages

and a tool to automatically generate parsers from it. In the

current section, we will sketch how the meta-language could

look like, and provide some examples for practical languages

specified using the meta-language.

There are plenty of regex meta-languages for regular

expressions, such as, e.g., the regex-support in Perl and the

input syntax for the grep tool included in most Unix-based

systems.7 [24]. We did consider to pick such a regex meta-

language, and to add some notation for the subexpressions

r1 = q(r.f)s(t#f)u and

r2 = q(r.f)s(tf)u

from Definition 6. We decided against this approach, however.

Instead, we will base our meta-language on Extended BNF

[19]. Apart form what we consider a cleaner syntax, this eases

future extensions of our meta-language for some form of “calc-

context-free” languages.

A. A Meta-Language for Context-Free Languages.

The core point for a meta-language specification is to dis-

tinguish meta-symbols, such as, e.g., brackets, from terminal

characters. We use the following convention:

• A terminal can be written by the percent-symbol (“%”),

followed by the numeric value (in hexadecimal notation).

• If the nonterminal is a printable character, it can also be

written in single or double quotation marks. E.g., if we

assume ASCII representation of characters, the printable

character ’a’ can also be written as ”a” and as %61.

• All other symbols are meta-symbols.

Typically, the input alphabet is Σ = {%0, . . . , %FF}.

For the concatenation of subexpressions, we write a comma

(’,’). E.g., %61, ’b’, ’c’ represents the string “abc”. As a

shortcut notation for the concatenation of terminals, we allow

multi-character strings such as, e.g., ’abc’ for ’a’, ’b’, ’c’.

For the choice between subexpressions, we use the “|”-

character. E.g. ’a’ | ’bc’ represents either the single character

’a’, or the concatenation of two characters ’bc’. Ranges, such

as ’a’ | ’b’ | ’c’ | ’d’ can be written as ’a’ - ’d’.

We use superscript-notation for the concatenation of the

same subexpression several times, and use the Kleene-star “*”

and the “+”-shorthand as usual.

For our meta-language, we use EBNF productions, as in

byte = %0-%FF;

for arbitrary bytes, and in

nonzero-digit = ”1” - ”9”;

digit = ”0” | nonzero-digit;

number = ”0” | (nonzero-digit, digit*);

pf-number = number, “:” ;

for decimal number without leading zeroes, and for such

numbers with a terminating a colon for prefix-freeness (as in

netstrings).

7Often with extensions, which allow to also specify some non-regular
languages in the meta-language.

We require every nonterminal X to be defined exactly once,

i.e., there is exactly one rule X = Y with X being a single

nonternimal and the expression Y the definition of X . The

semicolon (“;”) terminates a production.

B. From Context-Free to Regular to Calc-Regular.

So far, our meta-language would allow us to specify arbi-

trary context-free languages – that is, what EBNF has been

designed for. To restrict the languages we can specify to

regular ones, rather than to general context-free ones, we must

restrict the usage of nonterminals right of the “=” symbol:

Constraint 10. A nonterminal may only be used on the right-
hand-side of a production, if it has been defined in a previous
production.

This constraint prevents any recursive usage of nontermi-

nals, either directly, as in “S = ’(’ S ’)’;” or indirectly as in

“S = ’(’ T ’)’; T = ’[’ S ’]’;”.

It is straightforward to turn a language specification ob-

serving the above constraint into a specification of the same

language without nonterminals. Namely, if the nonterminal X
occurs in a definition, and the production for X is X = Y ,

i.e., Y is the definition of X , then we can textually replace

the occurrence of X in definitions by (Y). After finitely

many such replacements, we get a single expression without

nonterminals, which then is a regular expression. E.g., if we

apply this approach to “pf-number”, we get

pf-number = (“0” | ((“1”-”9”), (“0” | (“1”-”9”)))), “:”;

which defines “pf-number” without any nonterminals in the

definition.

After first restricting the meta-language, we now extend it.

Assuming we know which function is represented by f, we

can just write

r-one := q, (r.f), s, (t#f), u ;

r-two := q, (r.f), s, (tˆf), u;

almost as in Definition 6.

Note that Definition 6 does not allow the union operator

or the Kleene-star operator for calc-regular expressions –

except when the expression is regular. As our meta-language

is supposed to model calc-regular expressions, we need to

distinguish nonterminals, which are part of a strictly regular

subexpression, from nonterminals, which are part of a proper

calc-regular subexpression, and we need to constrain the usage

of the second kind of nonterminals.

Definition 11. A nonterminal is restricted, if it is defined by
a restricted production. A production is restricted,
• if it uses the “(r.f), . . . , (t#f)”-syntax,
• if it uses the “(r.f), . . . , (tˆf)”-syntax,
• if there is at least one restricted nonterminal in the

definition of the production.
• No other productions are restricted.

To mark a production as restricted, we write “:=”, as in the

productions for “r-one” and “r-two” above, where we write

“=” else, as in the production for “number”.

76

Constraint 12. A restricted production must not use the union-
or Kleene-star operators.

Note that the notation r+ is the shorthand for rr∗ and thus

also represents a Kleene-star operation, which is prohibited

for restricted productions.

C. Specifications for Practical Calc-Regular Languages

Though the specification for our meta-language is quite

sketchy, it suffices for the examples we give below. We will

not repeat the previous definitions for “number” and “byte”.

Recall netstrings without nesting, as in “5:Hello,” and

heartbeat-like nested netstrings, as in “8:3:abc,XY,” with a

3-byte challenge “abc” and two padding bytes “XY”. We can

specify these calc-regular languages as follows:

netstring := pf-number.decimal,

byte#decimal, “,”;

n-netstring := pf-number.decimal,

(netstring, byte*)#decimal, “,”;

Note that the “(netstring, byte*)#decimal”-part of the specifi-

cation for nested netstrings formally rules out the acceptance

of a netstring whenever the inner netstring exceeds the outer

one, as in the attack package “5:9999:,”. That does not mean

bugs, such as Heartbleed, will magically “go away”, when we

use our meta-language for specifications. But, if we use an

automated tool to turn the specification into a parser, we have

to take care only once, when implementing the tool, to make

sure the tool always puts the proper check at the proper places.

A PNG (portable network-graphic) chunk [22] consists of a

4-byte field holding the number of bytes in the data, followed

by a four-byte the chunk-type, followed by the data, followed

by a 4-byte CRC checksum. Critical chunk types are IHDR for

the first chunk, PLTE for the chunk storing the list of colors,

IDAT for image chunks, and IEND for the last chunk. PNG

allows other, “ancillary” chunk types, which we ignore for

ease of presentation. Then the calc-regular grammar for PNG

chunks would be the following:

chnk-type = “IHDR” | “PLTE” | “IDAT” | “IEND”;

chksum = byteˆ4;

png-chnk := (byteˆ4).big-endian, chnk-type,

byte#big-endian, chksum;

Note that the CRC-check is not part of our language definition.

A PNG-chunk can be rejected due to a CRC-failure, even if

it is syntactically correct.

Also note that (byteˆ4) is of constant length and thus

trivially prefix-free.

To pick yet another example, consider the MessagePack
strings and arrays [6]. Message Pack supports different string

types. E.g. strings of length up to 216 − 1 bytes (str16)

are represented in MessagePack by a one-byte type-identifier,

followed by a two-byte length field, followed by the data of

the specified length. Strings of length up to 232 bytes (str32)

are similar, except, of course for the type-identifier, and the

usage of a four-byte field for the length. MessagePack arrays

use count-prefix notation, i.e., store the number of elements,

not the number of bytes. Below, we will use our meta-language

to specify a string (str16) of less than 216 bytes and an array

(arr-of-str16), which can hold up to 216 − 1 such strings.

str16 := %D9, (byteˆ2).big-endian,

byte#big-endian;

str32 := %DB, (byteˆ4).big-endian,

byte#big-endian;

arr-of-str16 := %DC, (byteˆ2).big-endian,

str16ˆbig-endian;

D. A Possible Extension of the Meta-Language

Alas, we are far from modeling the full MessagePack

language. Consider an array, which can hold strings, and each

string could be either of type str16, or of type str32:

a-str := (str16 | str32);

arr-of-str := %DC, (byteˆ2).big-endian,

a-strˆbig-endian;

At a first look, this may appear OK. But actually, this does

not match a calc-regular expression, and we cannot write this

in our meta-language, because it violates Constraint 12.

So why not remove Constraint 12 from the meta-language?

Of course, the set of languages we could specify with

the tweaked meta-language would no longer be the calc-

regular languages as defined in the current paper. It would

be calc-regular languages with additional support for union

and Kleene-star operations. Thus, it would include languages,

which we do not know how to parse efficiently (cf. Theorem 6

and the discussion in Section V-B). We do not consider this

approach advisable.

On the other hand, the MessgePack example shows that

different syntactic constructs can be uniquely identified by

different type-prefixes (the byte constants %D9 and %DB and

%DC in the example). The union of such calc-regular languages

should be easy to parse, even though the union of regular

languages in general is, most likely, not easy to parse. Thus,

tweaking our definition for calc-regular languages, and then

relaxing – but not completely removing – Constraint 12, may

be an interesting research direction to explore, in the future.

E. Deterministic Calc-Context-Free Languages

There is another issue with our meta-language. Most data

serialization languages support nesting – and often unlimited

nesting of data structures. E.g., the item stored in a Mes-

sagePack array could also be another MessagePack array. We

cannot model this in our meta-language, due to Constraint 10.

Very much like the distinction between regular and context-

free languages, calc-regular languages almost always fail when

it comes to unlimited nesting, cf. Theorem 13.8

Eventually, pushing this research topic forward to define

and analyze “calc-context-free languages”, and especially

“deterministic calc-context-free languages” may be another

interesting research direction to explore. In fact, we consider

the current paper one step into that direction – which is one

reason, why our meta-language has been based on EBNF,

rather than on meta-languages for regular languages.

8With some very specific exceptions. E.g. set a =“(” and b =“)” and recall
the language L=anbn from Theorem 11.

77

IX. CONCLUSION AND FUTURE WORK

A common design pattern for data serialization languages is

the usage of length-prefix notation. I.e., when sending a data

blob B of N bytes, the sender will first send the number N
and then the data B. Thus, the receiver will know how large B
is, before it starts reading B. Even though this design pattern

is quite common, the issues of parsing such languages are not

well-understood, and implementations are frequently plagued

with bugs and vulnerabilities (cf. Heartbleed).

In the current paper, we introduced and studied calc-regular

languages, a formal model for languages with length-prefix

notation. Calc-regular languages can be defined via calc-

regular expressions. As it turns out, calc-regular languages are

context-sensitive. Nevertheless – and perhaps a bit surprising –

parsing calc-regular languages is almost as easy as parsing

ordinary regular languages.

Though we did not write a parser generator for calc-regular

languages, we did sketch a meta-language which may serve

as the input for such a parser generator. Furthermore, we gave

some example specifications for practical languages, such as

netstrings and PNG chunks, using the meta-language.

We consider this work a starting point for future research.

There are plenty of open problems and challenges, such as

• prove or disprove the conjectures in our paper,

• study more properties of calc-regular languages,

• tweak the definition of calc-regular languages, to support

some kind of union operation, as discussed in Subsec-

tion VIII-D,

• push the approach to a higher level by introducing

unlimited nesting, i.e., by formalize and studying some

new class of “deterministic calc-context-free” languages,

as discussed in Subsection VIII-E,

• write a parser generator for calc-regular languages, or

tweaked calc-regular languages, or deterministic calc-

context-free languages,

• . . .

We argue that advances in these directions will eventually

provide tools to eliminate bugs and avoid security issues,

We hope this work will be inspiring for other researchers, to

perform similar work or to give us some feedback, regarding

the directions for future research.

ACKNOWLEDGEMENT

The third author thanks Christian Forler for the initial

suggestion to consider this research topic at all. A part of this

research has been supported by the research project SIMPLE

SCRY (Strong IMPLEmentations for Symmetric CRYptogra-

phy) from Cisco.

REFERENCES

[1] J. Backus et al: Report on the Algorithmic Language ALGOL 60.
Communications of the ACM 3:5, 229–314 (1960). http://dl.acm.org/
citation.cfm?doid=367236.367262.

[2] D. Bernstein (1999): Netstrings, http://cr.yp.to/proto/netstrings.txt.
[3] S. Bratus, M. Patterson, A. Shubina: The Bugs we have to

Kill. USENIX;login: vol. 40, no. 4. http://langsec.org/papers/
the-bugs-we-have-to-kill.pdf.

[4] N. Chomsky: Three models for the description of language”. IRE
Transactions on Information Theory (2): 113124. https://chomsky.info/
wp-content/uploads/195609-.pdf

[5] Github: Hammer. https://github.com/UpstandingHackers/hammer.
[6] Github: MessagePack https://github.com/msgpack/msgpack/blob/

master/spec.md.
[7] J. Hopcroft, R. Motwani, J. Ullman: Introduction to Automata Theory,

Languages, and Computation (2nd ed.).
[8] B. Kaliski: A Layman’s Guide to a Subset of ASN.1, BER, and DER.

An RSA Laboratories Technical Note. Revised November 1, 1993. http:
//luca.ntop.org/Teaching/Appunti/asn1.html.

[9] D. Kaminski, M. Patterson, L. Sassaman: PKI Layer Cake: New Colli-
sion Attacks against the Global X.509 Infrastructure. Black Hat USA,
2009. http://www.cosic.esat.kuleuven.be/publications/article-1432.pdf.

[10] B. Kehoe: Zen and the Art of the Internet. A Beginner’s Guide to
the Internet, First Edition, January 1992. http://www.cs.indiana.edu/
docproject/zen/zen-1.0 toc.html.

[11] F. Momot, S. Bratus, S. Hallberg, M. Patterson: The Seven Turrets
of Babel: A Taxonomy of LangSec Errors and How to Expunge
Them. IEEE SecDev 2016, Nov. 2016, Boston. http://langsec.org/
papers/langsec-cwes-secdev2016.pdf.

[12] M. Rabin, D. Scott: Finite automata and their decision problems. IBM
J. Research and Development 3:2, 115–125 (1959).

[13] A. Oettinger: Automatic syntactic analysis and the pushdown store.
Information and Control 8:6, 607–639 (1961).

[14] L. Sassaman, M. Patterson, S. Bratus, M. Locasto, A. Shubina: Security
Applications of Formal Language Theory. IEEE Systems Journal,
Volume 7, Issue 3, Sept. 2013. http://langsec.org/papers/langsec-tr.pdf.

[15] L. Sassaman, M. Patterson, S. Bratus, A. Shubina: The Halting
Problems of Network Stack Insecurity. USENIX;login: vol.
36. no. 6, 2011. https://www.usenix.org/publications/login/
december-2011-volume-36-number-6.

[16] M. Schutzenberger: On context-free languages and pushdown au-
tomata. Proc. Symposia on Applied Math. 12, American Mathematical
Society (1963).

[17] W. Underwood, S. Laib: Attribute Grammars and Parsers for
Chunk-Based Binary File Formats. Georgia Tech Research Institute
ICL/ITDSD Technical Report 12-01, 2012.

[18] Wikipedia: Comparison of Data Serilization Formats (Jan. 2017) https:
//en.wikipedia.org/wiki/Comparison of data serialization formats.

[19] Wikipedia: Extended Backus-Naur form (Jan. 2017) https://en.
wikipedia.org/wiki/Extended Backus%E2%80%93Naur form.

[20] Wikipedia: Heartbleed (Jan. 2017) https://en.wikipedia.org/wiki/
Heartbleed.

[21] Wikipedia: Hollerith Constant (Jan. 2017) https://en.wikipedia.org/
wiki/Hollerith constant.

[22] Wikipedia: Portable Network Graphics (Jan. 2017) https://en.wikipedia.
org/wiki/Portable Network Graphics.

[23] Wikipedia: Protocol Buffers (Jan. 2017) https://en.wikipedia.org/wiki/
Protocol Buffers.

[24] Wikipedia: Regular expression (Jan. 2017) https://en.wikipedia.org/
wiki/Regular expression.

[25] N. Wirth: Compiler Construction. Zürich, Feb. 2014. (Slightly revised
version of the book published by Adison-Wesley in 1996.) http://www.
ethoberon.ethz.ch/WirthPubl/CBEAll.pdf.

APPENDIX

Early versions of FORTRAN did support “Hollerith con-

stants” for strings [21]. A Hollerith constant is a netstring

using “H” as the non-digit separator symbol (in honor of

Herman Hollerith), instead of the colon, and without a comma

at the end. Examples: 11HHELLO WORLD and 14HHELLO
"WORLD". Note that the dot at the end of the second example

is still part of the string.

In most programming languages today, including modern

FORTAN, string constants are enclosed in single or double

quotes. This seems to match human perception much bet-

ter. The second quotation mark is the “end”-postfix for the

string, as in "HELLO WORLD". A quotation mark within

the string constant needs “escaping”. This is often done by

doubling the (single- or double-) quotes, as in Pascal: "HELLO

78

""WORLD""." An alternative is to prepend a backslash, as

in Python: "HELLO \"WORLD\"."
While length-prefix notation is essentially gone for good

from programming languages, it seems quite typical for data

serialization languages, even though a few data serialization

languages also support end-postfix notation. Note that we

consider a representation, which encloses data in brackets or

quotes, a form of end-postfix notation.

For containers (arrays, lists, . . .), some data serialization

languages also use count-prefix notation, i.e., storing the

number of elements rather than the number of bytes. If the

sizes of the elements are not known in advance, the number

of the elements does not allow to compute the number of bytes

to store the container.

Following the links from [18], we compiled a list of data

serialization languages and which of these use either length-

or count-prefix or end-postfix notation. We write LPre for

length-prefix, CPre for Count-prefix and EPost for end-postfix

notation.

Language Strings Containers

Apache Avro LPre CPre

ASN.1 LPre LPre

Bencode LPre EPost

Binn LPre CPre

BSON LPre -

Cap’n Proto LPre LPre

CBOR EPost EPost

Colfer LPre EPost

D-Bus LPre +EPost LPre

Fast Infoset LPre LPre

google protobuf LPre LPre

GVariant EPost -

JSON EPost EPost

KMIP LPre -

Message Pack LPre CPre

Netstring LPre -

OGDL end-postfix -

OpenDDL EPost -

smile LPre EPost

s-expression EPost EPost

thrift LPre -

XDR LPre CPre

79

