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Abstract—Unprincipled input handling has caused many of
the most prevalent and severe vulnerabilities in the Internet era,
and this trend appears to continue in the emerging Internet of
Things (IoT). In this paper, we present a methodology to build
secure input-handling functionality for application-layer IoT
protocols by applying the Language-theoretic Security (LangSec)
philosophy. We have built working implementations for the
XMPP and MQTT protocols and demonstrated that our clients,
which consist of less than a hundred lines of code, correctly
recognize all valid messages in our tests. With respect to CPU
time, our clients compare well against the most widely deployed
implementations of these two protocols.

I. INTRODUCTION

Current estimates show that the Internet of Things (IoT)
will soon have billions of deployed devices. Approximately

50 million smart meters are in households in the USA at the

moment. Several taxi companies, natural gas pipelines and

industrial control systems make use of some of the popular

IoT protocols. Some of these applications use personally

identifiable information and any attack could lead to privacy

concerns. Moreover, the widespread deployment of these pro-

tocols increases the probability of an attack as several recent

attacks like the Mirai botnet [1] indicated. In the rush to deploy

these IoT services, IoT vendors have limited or no focus on

the required security mechanisms for their architectures.

Parser bugs in the recent years have been infamous –

Heartbleed, Android Master Key, Apple’s Goto. Parser bugs

have been haunting the Internet for the past several years, and

the same trend is expected to continue in the IoT. Our current

Internet works on a ”penetrate and patch” paradigm and, if

the same paradigm is applied to the IoT, it would continue

to lead to more parser-based vulnerabilities in the future [2].

Hence, we propose using Language-theoretic security to build

hardened IoT end-devices.

Language-theoretic security comes from the idea that many

of the input recognition vulnerabilities could be avoided by

treating all input as a language and completely recognizing

it before processing it. One possible approach would be to

use a parser generator like lex and yacc, which requires a

considerable amount of programming effort and makes it very

difficult to audit the code.

∗Prashant Anantharaman was at SRI International, Menlo Park when this
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Hammer [3] is a parser combinator toolkit that has been

designed to aid developers in building code that can enforce

input validation rules. This paper discusses how hammer
could be used along with protocol state machines to build

hardened implementations of IoT clients.

Summary of Contributions
• Our implementation demonstrates the efficacy of LangSec

for Internet-of-Things protocols. Our technique could be

deployed on IoT devices in the future.

• We show that the effort required to implement our

technique is very reasonable given the security benefits

offered to the IoT setting.

The structure of the paper is as follows. We first summarize

the XMPP and MQTT protocols and provide a brief overview

of bugs found in these protocol implementations. We then

describe how our state-machine and parsers work together and

discuss the limitations of our approach. Finally, we provide a

comparison between our clients and existing relevant ones and

take a glimpse at future work.

II. BACKGROUND AND RELATED WORK

The LangSec approach to security focuses on recognizing

and handling all input safely. This functionality can be en-

forced by using a parser combinator toolkit like Hammer,

which has bindings for several languages like C, C++, Python,

Ruby and Java. To perform the task of building these hardened

clients, we need to have a deep understanding of the target

protocols.

A. Understanding application layer IoT protocols

XMPP. XMPP is a popular chat protocol that runs on the

TCP/IP stack, and supports and enforces the use of TLS [4].

All clients connect to central servers.

XMPP messages are XML streams that need XML parsers.

A stream is negotiated between a client and a server. The

server supports some optional features, namely, binding, TLS,

and SASL authentication.

A trimmed version of XMPP could be a perfect fit for the

IoT world [5]. Service infrastructures for the IoT based on

XMPP have been proposed in the past [6]. XMPP maintainers

have agreed to make use of TLS v2, disable the support
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for SSL v2, and make use of STARTTLS [7]. Despite the

support for TLS, crafted messages could lead to exploits due

to the lack of a clear parser and recognition boundary (shotgun

parsers). Several secure architectures for XMPP have been

proposed in the past [8], [9], [10], but none of them addresses

the problem of shotgun parsers and untrusted input handling

in XMPP implementations, which could have devastating

repercussions in the IoT.

Some examples of XMPP messages are presented below.

<message type="chat" id="purpleb4dbd712"

to="arthur@sri.lit/host-134"

from="alice@sri.lit/XYZ567">
<active xmlns=

"http://jabber.org/protocol/chatstates"/>
<body>This is a sample XMPP message.

</body>
</message>

<success
xmlns="urn:ietf:params:xml:ns:xmpp-sasl"/>

The < message > is used to send a message from one

client to another after the stream negotiation is complete. The

< success > message is received by a client from a server

if the SASL authentication was successful. The other relevant

messages are < stream >, < stream− features >,
< proceed >, < auth > and < bind >.

Fig. 1: XMPP protocol state machine.

MQTT. MQTT is an asynchronous publish-subscribe archi-

tecture that works via a broker and was designed to consume

less battery and bandwidth [11]. MQTT supports a limited

number of messages - Connect, Connect Ack, Subscribe
Request, Subscribe Ack, Ping Request, Ping Response and

Publish Message. The message type is specified in the first 4

bits of the MQTT packet. The format of the MQTT packet is

described in Figure 2. To initiate a connection with a broker,

an MQTT client only needs to send one Connect message,

in contrast to the large number of messages in XMPP. The

client subscribes to channels using the subscribe message.

The server sends messages Connack, Suback, Pingresponse.

Figure 3 shows the state machine of the MQTT protocol.

Fig. 2: MQTT packet structure.

Hunkeler et al. proposed modifications to MQTT to be used

in wireless sensor networks. MQTT has come under a lot

of scrutiny for not being implemented correctly, with plenty

of production systems not enforcing TLS or password-based

authentication [12].

Fig. 3: MQTT protocol state machine. The ovals represent

states and the arrows represent MQTT messages.

We have seen past work on designing authorization mech-

anisms and making use of TLS to secure MQTT [13] [14].

Attribute-based encryption has been used in MQTT to encrypt

MQTT packets for different channels [15]. Again, none of this

work addresses the issue of handling untrusted input.

B. LangSec and Protocol State Machines

Shotgun parsers. Shotgun parsers perform data checking,

handling, and processing, interspersed with each other. The

shotgun parser pattern has led to several recent vulnerabilities

as context-sensitive data formats can be dangerous and not

easy to handle and recognize [16]. Instances of untrusted data

propagation due to shotgun parsers were also found in Android

applications in the past [17]. Shotgun parsers are only one of

the possible Langsec-related weaknesses [18] [19].

Parsing errors encountered in XMPP and MQTT. Pars-

ing errors could lead to memory corruption and logic errors,

which could in turn lead to severe security vulnerabilities.

We studied the CVE database [19] for the ”MQTT” and

”XMPP” search strings and analyzed the type of vulnerabilities

detected between 2013 – 2016. We found at least 14 vulner-

abilities in XMPP implementations, out of which only two

were cryptography-related (i.e., improper implementation of

STARTTLS). Almost all other vulnerabilities included crafted

XMPP input. The search string ”MQTT” also yielded similar,

but fewer results. MQTT had a higher percentage of crafted

input vulnerabilities as well.

Table I summarizes a comparison of parser-related errors

and cryptographic vulnerabilities in popular MQTT and XMPP

implementations from the CVE database.
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Client Protocol Vulnerabilities from Parsing Errors Cryptographic Vulnerabilities
Prosody IM XMPP 4 0
Cisco Jabber XMPP 4 1

Pidgin XMPP 3 0
Smack IM XMPP 1 1

IBM Message Sight MQTT 2 0
WebSphere MQ MQTT 1 0

TABLE I: Classification of vulnerabilities found in popular application-layer IoT protocols from 2013 – 2016 on Common

Vulnerabilities and Exposures (CVE).

Protocol State Machines. In this paper, we also make use

of protocol state machines to define contextual parsers. In the

past, there has been work in using protocol state machines for

hardening protocols. Poll et al. [20] describe the difference

in the state machines in various implementations of openssl.

Graham et al. [21] state that finite state machines are suffi-

ciently expressive for Internet protocols and are sufficiently

performing for high-throughput applications.

Our work combines the concept of protocol state machines
and the use of parser combinators to harden the implementa-

tions of IoT clients by making them less susceptible to input-

processing vulnerabilities.

III. METHODOLOGY

In this section, we provide a comprehensive tutorial of how

the state machine and the parsers hook together, and take a

look at the limitations of this approach.

Fig. 4: Overall architecture of a client: Depending on the

current state, a different parser is called to recognize the

message.

Our implementation is in ruby, and makes use of the ham-
mer ruby bindings [3] and the state machines gem [22], and

hence assumes the correctness of both these implementations.

Figure 4 gives an overview of the architecture of our IoT

client. We implement the state machine defined in Figure 1.

There are separate input recognizers for each of the states,

which get called when the client receives a message at a

particular state. Only once fully recognized, this input is

further processed.

Our process of building a client involves four steps:

• Construct a simplified state machine from protocol spec-

ifications.

• Build the state machine using the state machine gem.

• Identify the input language for each state.

• Define parsers for each of the receiving states of the state

machine.

Constructing the protocol state machine. A protocol state

machine is constructed from the specifications. To simplify

the finite state machine, we need to enforce a few cases. For

example, in our implementation of XMPP and MQTT, we

enforce TLS and password based authentication because we

think it is the right approach to follow as per the guidelines.

The states and transitions that need to be handled in the case

of not enforcing TLS and passwords can now be ignored. We

make use of the state-machine ruby gem [22] to this effect.

The gem includes a set of test helpers that could be used to

aid in development as well. We implement the state machines

in Figures 1 and 3.

The state machine gem could be used in this fashion with

before transition and after transition methods used to trigger

methods.

state_machine :state, initial: :start do
before_transition on: :stream_1_sending,

do: :stream_1_sent_call

before_transition on: :start_tls_sending,

do: :start_tls_sent_call

before_transition on: :ssl_negotiation,

do: :ssl_negotiation_call

before_transition on: :auth_sending,

do: :auth_sent_call

before_transition on: :bind_sending,

do: :bind_sent_call

after_transition on: :quitting,

do: :quit_call

event :stream_1_sending do
transition [:start] =>

:stream_1_sent

end
event :stream_1_received do

transition [:stream_1_sent] =>

:stream_1_received

end
end
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The above code snippet shows a part of the implementation

of the state machine. The event methods show transitions

between states. At each state that is receiving a message, we

need to fully recognize the message received with the help of

a parser.

Defining the receiving state parsers. We need to define

a separate grammar for the messages we are expecting for

each receiving state. For example, in the implementation of

the XMPP protocol, if we sent the stream stanza to initiate

an XMPP connection, we should be receiving a stream stanza

back from the server along with some options. We need to use

a parser to make sure this message is completely recognized.

We need to define the language that is to be accepted at every

state. Let us first look at the grammar for simple < stream >
messages.

whitespace→ \x20
doublequote→ \x22
newline→ \x5c \x6e
tab→ \x5c \x74
gaps→ whitespace | tab | newline
many gaps→ gaps | gaps gaps
zero gaps→ E | gaps | gaps gaps
starttag → zero gaps \x3c zero gaps
start closetag → zero gaps \x3c
zero gaps \x2f zero gaps
endtag → zero gaps \x3e zero gaps
closetag → zero gaps \x2f\x3e zero gaps
stream word→ \x73 \x74 \x72 \x65 \x61 \x6d
stream open tag → starttag stream word endtag
stream close tag → start closetag stream word endtag

@hammer = Hammer::Parser

whitespace = @hammer.ch(’\x20’)

doublequote = @hammer.ch(’\x22’)

newline = @hammer.token("\x5c\x6e")
tab = @hammer.token("\x5c\x74")
gaps = @hammer.choice(whitespace, tab, newline)

many_gaps = @hammer.many1(gaps)

zero_gaps = @hammer.many(gaps)

starttag = @hammer.sequence(zero_gaps,

@hammer.ch(’\x3c’), zero_gaps) # "<"

start_closetag = @hammer.sequence(zero_gaps,

@hammer.ch(’\x3c’), zero_gaps,

@hammer.ch(’\x3e’), zero_gaps # "</"

endtag = @hammer.sequence(zero_gaps,

@hammer.ch(’\x3e’),

zero_gaps) # ">"

closetag = @hammer.sequence(zero_gaps,

@hammer.ch(’\x2f’), @hammer.ch(’\x3e’),

zero_gaps) # "/>"

stream_word = @hammer.token("\x73\x74\x72
\x65\x61\x6d") # "stream"

stream_open_tag = @hammer.sequence(starttag,

stream_word,

endtag) # <stream>

stream_close_tag = @hammer.sequence(start_closetag,

stream_word,

endtag) # </stream>

The grammar defines whitespaces, double-quotes and all the

other special characters as separate productions to help reusage

of the combinators. The stream word parser defines the word

stream in the hexadecimal notation. The starttag production

has the character < and the endtag has the character >. These

productions can be reused while defining productions for the

XML tags. All the tags allow zero or more spaces or special

characters surrounding the tag symbols. This grammar was

converted to hammer parser-combinator code in ruby, and is

shown in the code above.

It is important to understand the combinators provided by

hammer to represent grammar. The many combinator is used

to apply the combinator given as an argument zero or more

times. We use the many1 combinator if it has to be used one

or more times. The sequence combinator is used to group

these combinators together in a sequence. The ch combinator

is used to represent a single character and the token combinator

is used to represent a string. We make use of these basic

building blocks to convert the grammar to the hammer parser

combinator code.

Validating input. We will now look at how we use the

hammer parsers we have already defined to recognize a

message given as an argument. The hammer parser provides

an object of class HParseResult if the parsing was successful,

and a nil if the parsing was not successful. Upon successful

recognition, we need to fire events to perform certain actions.

In the example below, we are recognizing a message with the

< stream > message, and fire an event if the parsing was

successful.

def validate_stream(args)

if !stream_open_tag.parse(args).nil?

true
else

false
end

end

def stream_1_received(message)

if validate_stream(message) and
state == "stream_1_sent"

fire_events(:starttls_sending)

end
end

The above method would fire the starttls sending transition,

if the message was recognized fully and correctly.

File organization. As per the LangSec philosophy, all

the input validators are placed in a separate class. These

validators return a boolean if given a string to parse. These

validators are called from all other files as and when input

recognition is needed. Placing the validators in a separate

class serves two purposes. Firstly, it helps in re-usability of

parser-combinator code. Secondly, it could aid developers

and people performing code audits to easily identify mistakes

in input recognition.
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Limitations
• We can only define context-free grammars and regular

expressions using parser-combinator toolkits. Hence, if

the language to be recognized by our parser is either

a context-sensitive grammar, or a Turing-complete lan-

guage, we would have to simplify it down to a context-

free grammar or a regular expression resulting in loss

of functionality. However, we argue that this is essen-

tial since Turing-completeness or context-sensitivity of a

language only results in more input processing errors.

• Since our implementations were lightweight, we see that

our implementations were faster than a few other widely

used open-source clients. In general, a layer to recognize

input completely adds some overhead time. However,

this cost is reasonable considering the benefits of this

approach.

IV. EVALUATION AND DISCUSSION

To evaluate our implementation of the MQTT and XMPP
protocols, we run timing experiments to determine how our

implementation performed in comparison to other implemen-

tations. We also perform unit and preliminary fuzz testing, and

describe our methodology.

A. Experiments

We compare the performance of our implementation and

other open source implementations of XMPP and MQTT

available. We analyze SleekXMPP [23] for python, Smack [24]

for Java, and Xrc [25] for ruby. We compare the total time to

reach a connected state. These experiments were performed on

a Raspberry Pi 2. For the server side of the XMPP protocol, we

make use of Vines - An XMPP chat server [26]. In a similar

setup, for the MQTT protocol, we use ruby-mqtt, pyMQTT
and the Mosquitto broker.

Client CPU Time
Our implementation 0.42 s

Xrc 0.59 s
Smack 0.30 s

QXMPP 0.41 s
SleekXMPP 0.90 s

TABLE II: Comparison of average time to connect to the

XMPP server.

Client CPU Time
Our implementation 218 μs

ruby-mqtt 2.3 ms
pyMQTT 1.2 ms

TABLE III: Comparison of average time to connect to the

MQTT broker.

In Tables II and III, we observe that our clients run in

comparable time to most other XMPP and MQTT clients. Our

clients are comparatively light weight and need fewer features

than the traditional clients; hence, the similar CPU time values.

Message CPU Time Number of lines in hammer
Stream 1 17 ms 39
Proceed 18 ms 20
Stream 2 27 ms 39
Success 3 ms 20

Stream 3 24 ms 39
Bind 11 ms 25

TABLE IV: Comparison of average time to recognize various

XMPP message inputs and the human effort in terms of lines

of code.

Message CPU Time Number of lines in hammer
Connect Ack 39 μs 6

Subscribe Ack 126 μs 7
Ping received 97 μs 6

TABLE V: Comparison of average time to recognize various

MQTT message inputs and the human effort in terms of lines

of code. MQTT messages for receiving acknowledgements

from the server generally contain just 2 bytes and are easy

to parse.

In Tables IV and V, we show that the amount of time used

to recognize various inputs is minimal (i.e., in the order of

tens of milliseconds).

We also observe that, with just under 250 lines of code, we

can implement the input recognizers for a simplified version

of XMPP, which indicates that the human effort required for

such an implementation is not significant. Writing a separate

layer of a parser and defining the protocol state machine

explicitly are steps that are necessary to be taken and improve

the process of code auditing.

B. Unit testing

We evaluate the correctness of the validation and state

machine components using unit testing. We provide results

of our unit testing in Table VI. We wrote unit tests for most

of the parsers required for the two implementations, achieving

a 100% code coverage for the state machine implementations

and over 80% code coverage for the other parser implemen-

tations.

Protocol Component Coverage
XMPP State machine 100%
XMPP Parser validation 86.55%
MQTT State machine 100%
MQTT Parser validation 81%

TABLE VI: Unit test coverage of our XMPP and MQTT

implementations via coverage gem.

C. Preliminary fuzzing

To assess the trustworthiness of our input recognizers,

we build a simple generational fuzzer to check what input

is accepted by our recognizers. The process of generating

messages using our fuzzer is defined below:

• We provide the parser-combinator object as an input to

our fuzzer generator.

• Our fuzzer generator generates a parse tree from the

parser-combinator object.
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• Our fuzzer generator generates messages by traversing

the parse tree and emitting all possible strings.

• These sequences of messages are sent to our client and

tested for correctness.

We use this technique to build a dataset of possible messages

at each state of the protocol state machine. Our client was

fed a large series of these sequential messages and it did

not crash for any of these sequences; hence, showing some

resilience. However, we acknowledge that such fuzzers need to

be targeted towards dependencies between fields and protocol

boundaries. We leave this investigation as future work.

V. LESSONS LEARNED

We set out with the goal of demonstrating the efficacy of

using LangSec in IoT protocols. We make use of the hammer
parser-combinator toolkit to this end. It proved very easy for

us to convert a context-free grammar to a parser-combinator

implementation. The hammer library includes bindings for

several programming languages and we made use of the ruby

bindings for our implementations.

The specifications of protocols are in plain-text and are

lengthy. Given the LangSec methodology, we have to read

through these specifications and design a language compliant

with the protocol specifications. Specifications could be more

exact if they specified the protocol state machine and the input

language for each receiving state. This would prevent parser

differentials.

We found that context-free grammars for each receiving

protocol state were sufficient to recognize XMPP and MQTT

messages. However, if a language is context-sensitive or

Turing-complete, it has to be simplified and constrained to be

a context-free language, such that it can be fully recognized.

Shotgun parsers are very prevalent and are one of the major

causes of zero days. Thus, we recommend that commercial

IoT applications make use of the LangSec design to avoid a

number of zero days.

The hammer parser-combinator toolkit fared reasonably

well in a constrained environment, showing that the overhead

due to the recognizer was very negligible. The programmer

does not have to write a lot of additional lines of code. The

generation of the state machine could be automated with a

tool to further reduce programmer effort. We simplified the

language of the protocols to make it more strict, by enforcing

rules that were otherwise optional in the protocol. This would

reduce functionality of the protocol, but, at the same time,

improve the security of the protocol.

VI. CONCLUSION

In this paper, we address the widespread problem of un-

principled input handling in IoT clients. We explore some of

the popular application-layer IoT protocols and then discuss

some of the recently known vulnerabilities in IoT protocols.

We then describe the methodology used to build LangSec-

compliant IoT clients. We analyze our implementation and

show that the performance cost and the human effort in terms

of lines of code added due to the hammer-based parser are a

very reasonable price to pay for security. We generated large

datasets of valid sequential XMPP and MQTT messages to

see for what input our clients broke, and found no input that

our implementation could not handle.

Our future work will include a parser-combinator-based

smart fuzzer, which will generate targeted datasets exploiting

the boundaries of the protocol, and building formally verified

LangSec parsers for various protocols.
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